sfw
nsfw

Результаты поиска потегукосмос

Дополнительные фильтры
Теги:
космосновый тег
Автор поста
Рейтинг поста:
-∞050100200300400+
Найдено: 1000+
Сортировка:

Отличный комментарий!

ВЫЁБУ/,комикс,без перевода,космос,pedro arizpe,сирены,space,смешные комиксы

Чaстo мoжнo увидeть, кaк нa зaкaтe сoлнeчный свeт oкрaшивaeт oблaкa в рoзoвый цвeт. А вот так эти облака на закате выглядят из космоса с борта МКС.

Комета Леонарда на снимке Lionel Majzik декабрь 2021 года _

«Джеймс Уэбб» увидел кристаллы кремнезема в облаках экзопланеты

В высоких облаках «раздутого» горячего юпитера ученые впервые засекли нанокристаллы кремнезема — одного из самых распространенных минералов на Земле.
Иллюстрация атмосферы горячего газового гиганта WASP-17b
Аэрозоли — будь то облака из жидких частиц или дымка из твердых частиц — один из фундаментальных компонентов атмосфер экзопланет. Эти частицы заглушают, отражают и рассеивают свет звезды и тем вносят большой вклад в весь энергетический баланс космического тела, а также химию и динамику его атмосферы.
Астрономы видят наличие облаков или дымки по изменениям света звезды, когда экзопланета пролетает на ее фоне. Но определить точный состав этих аэрозолей — более сложная задача. Вместе с тем она весьма интересна, потому что аэрозоли много говорят о самой планете: в аэрозолях земной атмосферы, к примеру, есть алюминий и литий, остающиеся от последствий пусков космической техники. Поэтому пока что каждое открытие нового соединения в атмосфере экзопланеты привлекает внимание.
Теперь впервые в атмосфере экзопланеты астрономы увидели нанокристаллы кремнезема. Все благодаря работе инструмента MIRI космической обсерватории «Джеймс Уэбб». Результаты исследования опубликованы в Astrophysical Journal Letters.
Объектом наблюдений стала экзопланета WASP-17b, горячий юпитер в 1300 световых годах от Земли. По массе WASP-17b в два раза меньше Юпитера, зато по объему примерно в семь раз больше. Это одна из крупнейших и «пухлых» экзопланет из числа известных нам. Ее орбитальный период — всего 3,7 земного дня, что значительно упрощяет исследования.
В этот раз наблюдения вели на протяжении 10 часов, пока объект пролетал на фоне своей звезды. Инструмент MIRI для наблюдений в средней части инфракрасного диапазона сделал более 1275 измерений яркости излучения в диапазоне волн от пяти до 12 микронов.
Когда ученые «вычли» из этих данных чистое излучение звезды, они увидели на графике «холмик» в районе 8,6 микрона, который лучше всего объясняется наличием кристаллов кремнезема. По размеру эти кристаллы очень маленькие — всего 10 нанометров. Диаметр человеческого волоса в 10 тысяч раз больше.
Состав частиц в «облаках» WASP-17b. Фиолетовый график — спектр, смоделированный по данным «Уэбба», «Хаббла» и «Спитцера». Желтый пунктирный график — состав «облаков», если бы в них не было кремнезема
«Данные "Хаббла" сыграли ключевую роль в определении размеров этих частиц. Для уверенности в наличии там кремнезема нам достаточно данных MIRI, инструмента "Уэбба". Но чтобы понять, насколько большие эти кристаллы, нам понадобились наблюдения "Хаббла" в видимом и близком инфракрасном диапазонах», — рассказала соавтор работы Николь Льюис, профессор астрономии и руководитель исследования по созданию трехмерной модели атмосферы горячего юпитера, которое проводится в рамках программы Webb Guaranteed Time Observations (GTO).
Силикаты — минералы, богатые кремнием и кислородом — составляют значительную массу Земли, Луны и других каменистых объектов Солнечной системы. Они уже встречались астрономам в атмосферах экзопланет и в составе коричневых карликов, но в форме богатых магнием минералов вроде оливина и пироксена, а не чистого кремнезема.
Причем если в облака Земли частицы минералов попадают с поверхности планеты благодаря ветру, то на горячем юпитере WASP-17b нанокристаллы кремнезема формируются в верхних слоях самой атмосферы, в условиях высокой температуры, примерно 1500 градусов Цельсия, и очень низкого давления — одной тысячной земного.
«В этих условиях твердые кристаллы могут формироваться напрямую из газа, минуя фазу жидкого состояния», — объяснил главный автор исследования Дэвид Грант из Бристольского университета (Великобритания).
По словам ученого, из данных «Хаббла» они знали, что в атмосфере WASP-17b должны быть аэрозоли, но не ожидали, что в составе будет кремнезем.
«Мы ожидали увидеть силикаты магния, а засекли, вероятно, их "кирпичики" — маленькие частицы, необходимые для формирования более сложных силикатов, которые мы видим на более прохладных экзопланетах и коричневых карликах», — объяснила соавтор Ханна Уэйкфорд из Бристольского университета.
Горячие юпитеры вроде WASP-17b состоят в основном из водорода и гелия с небольшими примесями водяного пара и углекислого газа. И если учитывать лишь эти примеси, общая оценка количества кислорода в планете окажется сильно заниженной. Впрочем, и сейчас оценить объем кремнезема в облаках WASP-17b не удастся, потому что в рамках этого исследования инструмент MIRI наблюдал лишь окрестности терминатора — линии между дневной и ночной стороной экзопланеты.
Статья спизжена отсюда

Миссия "Психея" космический майнинг начинается?

13 октября 2023 года в 10:19 по восточному поясному времени из Космического центра Кеннеди со стартовой площадки 39А на борту ракеты SpaceX Falcon Heavy стартовала миссия Psyche. https://psyche.asu.edu/

Чем эта миссия так интересна - прежде всего дело в самом объекте, астероиде https://ru.wikipedia.org/wiki/(16)_Психея,  это ~ 250 км в диаметре астероид скорее всего является планетезималью - протопланетным ядром, которое пыталось но не смогло сформировать планету, потому что в результате столкновения на заре формирования солнечной системы с неё собрало все верхние слои. Фактически это может быть оголенный кусок ядра планеты типа Земли или Марса, и в отличии от мелкого астероида как Бенну (грунт с которого недавно привезли на Землю), Психея в большей степени из металла и камня и хотя в основном там конечно железо и никель, но скорее всего и других, в том числе редкоземельных металлов там тоже немало, так что это уникальный объект и уникальный шанс поковырять и исследовать что-то вроде ядра планеты, до ресурсов которого на Земле пока что нереально добраться.
Пока что речь просто про исследовательскую миссию, просто разведать и составить карту, но глобально если и есть смысл в космическом майнинге астероидов (к чему лично я отношусь с большим скепсисом), то это как раз тот астероид который имеет смысл "майнить".
За одно эта миссия и парочку других классных штук опробует, например электрические движки на эффекте Холла на ксеноне (доработка и развитие концепции придуманной в ОКБ "Факел" в 1980-х, сейчас подобные движки используются на многих спутниках, в том числе Starlink) должны донести миссию до Психеи на 3,3 астрономических единицы всего за 5 лет, что довольно таки быстро. А пока летит и после, на орбите астероида, космический корабль также будет испытывать экспериментальную технологию лазерной связи под названием Deep Space Optical Communications, производительность и эффективность связи ожидается в 10-100 раз выше по сравнению с обычными средствами - лазерные лучи от космического корабля будут приниматься наземным телескопом в Паломарской обсерватории в Калифорнии.

Фантастический космос за пределами того, что мы считаем всей Вселенной.

Несмотря на развитие науки, даже в начале двадцатого века существование иных галактик было под вопросом. Только в 1924 году Эдвин Хаббл доказал, что наша галактика не одна во Вселенной. Затем были обнаружены скопления галактик, различные по структуре и размерам. Вселенная оказалась намного сложнее, чем мы представляли.
Считается, что скопления галактик это и есть вся Вселенная. Но ведь мы уже думали в прошлом, что наша галактика это вся Вселенная, а это оказалось не так. Что, если то, что мы считаем всей Вселенной, это лишь часть Вселенной, а не вся она?
С помощью фантастики я предлагаю вам посмотреть, какими могут быть иные части Вселенной и даже системы частей Вселенной. Но, помимо взгляда на иное, хочу поделиться с вами мыслями о том, какие драмы космических масштабов могут происходить в глубинах Вселенной.
Для удобства изложения своих мыслей мне пришлось придумать несколько фантастических терминов.
Локсреаль (ЛОКальная Система РЕАЛЬности) — то, что мы считаем всей Вселенной.
Дов — система локсреалей.
Инкосм — пространство, в котором находятся локсреали и довы.
Книга-альбом "За пределами Вселенной" (бесплатно, конечно) в формате PDF:
https://disk.yandex.ru/i/vKwA0GZgu07F0w
EPUB: https://disk.yandex.ru/i/qBdV0thNVb0fEQ
FB2: https://disk.yandex.ru/i/EKt6_a-jRNCeuA
Всем добра!
Что, если то, что мы считаем всей Вселенной, это лишь часть Вселенной, а не вся она?
Это невозможно - мы уже наблюдаем ВСЮ Вселенную.
2(4,55%)
Это невозможно, так как наука чётко доказала, что мы видим всю Вселенную.
3(6,82%)
Это возможно, так как в науке ещё нет чёткого ответа на многие вопросы о Вселенной.
18(40,91%)
Это возможно, так как Вселенная намного сложнее, чем мы можем даже представить.
21(47,73%)

Быстрые радиовсплески оказались похожи на землетрясения — только на нейтронных звездах

В стремлении понять природу этих загадочных космических сигналов японские ученые сравнили данные тысяч быстрых радиовсплесков с афтершоками землетрясений и солнечными вспышками. И нашли сходства.
Иллюстрация образования быстрого радиовсплеска от магнетара
Быстрые радиовсплески (Fast Radio Bursts, FRB) — необычайно короткие и яркие радиоволны, разлетающиеся по космосу на миллиарды световых лет. Сам сигнал при этом длится долю секунды, а появление вспышки непредсказуемо. Впервые их заметили в 2007 году, и с тех пор они остаются одной из загадок современной астрономии.
Отчасти проблема их исследования в том, что не удается поймать точный источник этих радиоволн. Среди предположений — черные дыры, инопланетные цивилизации, гибнущие планеты и нейтронные звезды. В последних ученые почти уверены: наблюдения показывают, что по крайней мере некоторые из быстрых радиовсплесков прилетают от слияний нейтронных звезд и так называемых магнетаров — нейтронных звезд с мощнейшим магнитным полем.
«Выдвигались гипотезы, что на поверхностях магнетаров могут происходить звездотрясения — выделения энергии, схожие с земными землетрясениями. Последние достижения в сфере наблюдательной астрономии привели к обнаружению тысяч новых быстрых радиовсплесков. Мы воспользовались возможностью и сравнили огромные наборы статистических данных по быстрым радиовсплескам с данными землетрясений и солнечных вспышек. Искали возможные сходства», — рассказал профессор Томонори Тотани (Tomonori Totani) из департамента астрономии Токийского университета (Япония).
Предыдущие статистические исследования быстрых радиовсплесков фокусировались на промежутках времени между последовательными сигналами. Тотани и его соавтор Юйа Цудзуки (Yuya Tsuzuki) предположили, что такой анализ не дает полной картины о возможных корреляциях в параметрах сигналов, и решили сопоставить время между сигналами с количеством выплеснутой энергии.
Они исследовали почти 7000 быстрых радиовсплесков от трех самых активных источников — FRB 20121102A, 20201124A и 20220912A. Искали сходства в параметрах, универсальные для всех трех источников. Затем ученые тем же методом сопоставили время и энергию землетрясений, используя данные по Японии, и солнечных вспышек по данным спутника Hinode, изучающего Солнце. Результаты работы опубликованы в Monthly Notices of the Royal Astronomical Society.
Сопоставления времени и энергии у быстрых радиовсплесков (слева) и землетрясений (справа)
Анализ показал мало сходств между быстрыми радиовсплесками и солнечными вспышками, зато множество сходств между всплесками и землетрясениями.
«Во-первых, вероятность возникновения афтершоков от того же события составляет 10-50% (в комментарии для СМИ ученый указывает эти числа, а в статье — 10-60%. — Прим. ред.). Во-вторых, со временем частота афтершоков снижается, как функция степени от времени. В-третьих, частота афтершоков не меняется, даже если меняется активность „FRB-землетрясений“. В-четвертых, нет корреляции между энергией основного всплеска и его афтершока», — объяснил Тотани.
,космос,астрономия,наука,магнетар,нейтронная звезда,Реактор познавательный,длиннопост
Корреляционный анализ данных FRB 20121102A L21
,космос,астрономия,наука,магнетар,нейтронная звезда,Реактор познавательный,длиннопост
Корреляционный анализ данных землетрясения Нарита
,космос,астрономия,наука,магнетар,нейтронная звезда,Реактор познавательный,длиннопост
Корреляционный анализ данных солнечной вспышки
Это дает надежные основания полагать, что у нейтронных звезд есть твердая оболочка, подверженная «звездотрясениям», во время которых выделяется огромное количество энергии. А наши телескопы видят эти события в виде быстрых радиовсплесков. Получается, эти загадочные сигналы — наша возможность изучить физические характеристики коры нейтронных звезд.
Статья спизжена отсюда

NASA показали грунт с астероида

На специальной трансляции специалисты NASA продемонстрировали грунт с астероида Бенну который доставила спускаемая капсула зонда OSIRIS-REx. Забор грунта был произведён 20 октября 2020 года, а капсула с ним вернулась на Землю 24 сентября 2023 года. После сброса капсулы зонд OSIRIS-REx отправился на исследование астероида Апофис к которому прибудет в 2029 году.
Первичный анализ образцов грунта показал наличие как углерода, так и воды.

Отличный комментарий!

Если без шуток то это охренеть как круто.Металический коробка слетала космос, отгрызла кусок астероида, и вернулась назад.
Копейки в сравнении с тратами на всякую хуиту.

В состав астероидов могут входить неизвестные типы «сверхплотной» материи

Плотность некоторых крупных астероидов может в разы превышать плотность любых известных на Земле элементов. Это должно указывать на то, что «космические камни», по крайней мере частично, могут состоять из неизвестных типов очень плотной материи, которые нельзя изучить с помощью «стандартной модели физики». Авторы нового исследования попытались объяснить чрезвычайно высокую плотность одного из таких крупных астероидов.
33 Polyhymnia
Earth Distance: 3.567 AU Sun Distance : 2.718 AU,Реактор познавательный,полигимния,астероид,наука,физика,космос,длиннопост
Орбита астероида (33) Полигимния и его положение в Солнечной системе
В середине XX века советский физик-ядерщик Геогий Флеров со своими подопечными смог синтезировать в лаборатории ряд сверхтяжелых элементов, включая унунквадий с атомным номером (Z) 114, впоследствии его переименовали в флеровий в честь физика.
Под атомным номером (порядковый номер химического элемента в периодической системе элементов таблицы Менделеева) понимают количество положительных элементарных зарядов в атомном ядре. На сегодня в периодической таблице числятся 118 элементов, в природе встречается 92 из них, остальные 26 получены искусственно. Чем выше атомный номер элемента, тем он «тяжелее».
Советские ученые предположили, что все элементы, полученные в лаборатории, должны были когда-то существовать на Земле, но с течением времени они распались. Действительно, их следы, пусть и ничтожные, находят на нашей планете. Например, следы нептуния (Z=93) обнаружены в урановых рудах — это продукты ядерных реакций под действием нейтронов космического излучения и спонтанного деления урана.
Флеров выдвинул гипотезу, что в природе должен существовать «остров стабильности сверхтяжелых ядер» — группа сверхтяжелых элементов, находящаяся за пределами уже открытой части таблицы Менделеева.
,Реактор познавательный,полигимния,астероид,наука,физика,космос,длиннопост
Остров стабильности на карте изотопов
Сегодня физики разделяют сверхтяжелые элементы на две группы:
— С атомным номером от 105 до 118, которые были получены искусственно, но при этом радиоактивны и нестабильны, с очень коротким периодом полураспада, и, следовательно, они представляют только академический и исследовательский интерес;
— Элементы «острова стабильности» с атомным номером больше 118. Они пока не наблюдались в природе, но для некоторых из них были предсказаны свойства. В частности, расчеты показывают, что могут существовать элементы до Z=164, при этом они могут оставаться стабильными на протяжении долгого времени.
Поскольку плотность элементов, как правило, возрастает с увеличением их атомной массы, можно ожидать, что элементы «острова стабильности» будут чрезвычайно плотными.
На Земле самый плотный стабильный элемент — металл осмий (Z=76) — 22,59 г/см3, его плотность почти в два раза больше, чем внутреннего ядра Земли. Однако в космосе встречаются объекты с плотностью элементов намного выше, чем у осмия, — так называемые компактные сверхплотные тела (compact ultradense objects, CUDO).
Один из ярких примеров таких объектов — астероид Главного пояса (33) Полигимния: согласно расчетам, его плотность составляет около 75 г/см3. Группа американских физиков из Аризонского университета попыталась объяснить эту особенность астероида. Ученые задались целью рассчитать атомную структуру и свойства сверхтяжелых элементов Полигимнии (около значения Z=164), используя модель атома Томаса — Ферми. Результаты работы опубликованы в The European Physical Journal Plus (здесь можно ознакомиться с ее полным текстом).
«Мы выбрали эту модель, несмотря на ее неточность, за то, что она позволяет систематически изучать атомную структуру потенциальных сверхтяжелых химических элементов, которых нет в известной периодической таблице. Кроме того, с ее помощью можно исследовать множество атомов за короткое время», — объяснил ведущий автор исследования Ян Рафельски.
Плотности элементов с атомным номером от 1 до 100. Красными треугольниками отмечены тяжелые металлы. Красный треугольник в правом верхнем углу — осмий (Z=76), самый плотный стабильный элемент на Земле
Расчеты физиков показали, что элементы, которые имеют атомные номера близкие к 164, могут быть стабильными и при этом их плотность может составлять от 36,0 до 68,4 г/см3 — значение очень близкое к значению плотности, полученному при изучении Полигимнии (75 г/см3).
Авторы сделали вывод, что на астероиде могут находиться сверхтяжелые элементы «острова стабильности». Если оценки плотности верны, то, скорее всего, Полигимния состоит из неизвестных на сегодня сверхтяжелых ядер элементов, которые пока невозможно изучить на Земле — по крайней мере, при современном уровне возможностей в области получения атомных ядер.
Предсказанные границы массовой плотности сверхтяжелых элементов в областях атомных номеров Z = 114, 140 и 164 (зеленые точки), пунктиром линейная интерполяция
Стоит отметить, что на вопрос об «острове стабильности» есть и иная точка зрения. Ряд ученых считают, что такие элементы в любом случае не могут быть достаточно долгоживущими, а обнаружение астероидов с аномальной плотностью (типа Полигимнии) может объясняться ошибками в астрономических наблюдениях. Окончательно прояснить вопрос могли бы только исследовательские миссии к таким телам.
Статья спизжена отсюда
Здесь мы собираем самые интересные картинки, арты, комиксы, мемасики по теме (+1000 постов - )