sfw
nsfw

Результаты поиска по запросу

Дополнительные фильтры
Теги:
новый тег
Автор поста
Рейтинг поста:
-∞050100200300400+
Найдено: 83
Сортировка:
US 708 - самая быстрая блуждающая звезда, покидающая галактику, получив "пинка" от сверхновой.
 У компактной звезды, имеющей название US 708, была совсем нелегкая жизнь. К ее несчастью она оказалась неподалеку от более массивного соседа, который в буквальном смысле "ободрал ее как липку", оставив только плотное ядро, имеющее большую концентрацию гелия. Но даже и в "ободранном" виде звезде US 708 не было суждено тихо умереть. Ее ненасытный сосед "объелся" звездной материи до такой степени, что не выдержал, и почил невероятно мощным взрывом сверхновой, который катапультировал звезду US 708 с такой силой, что она на огромной скорости устремилась прочь из галактики.
 Звезда US 708, которая относится к типу горячих подкарликов (hot subdwarf), в настоящее время убегает из Млечного Пути со скоростью более 1200 километров в секунду, это быстрее, нежели двигается любая из других известных астрономам блуждающих звезд, звезд, не привязанных ни к какой звездной системе.
 Ученым-астрономам известны и другие быстрые блуждающие звезды, способные преодолеть гравитационные силки Млечного Пути и отправиться в пустоту межгалактического пространства. Подавляющее большинство этих звезд, по анализу траекторий их движения, ускорились при помощи гравитационной "рогатки" сверхмассивной черной дыры Sgr A*, располагающейся в центре нашей галактики.
 "Звезда US 708 летит совсем не из центра галактики. И нам сейчас неизвестно о наличии других сверхмассивных черных дыр, располагающихся в пределах Млечного Пути. А небольшая черная дыра, масса которой сопоставима с массой больших звезд, абсолютно неспособна разогнать звезду US 708 до такой большой скорости" - рассказывает Штефан Гайер (Stephan Geier), астроном из Европейской южной обсерватории (European Southern Observatory, ESO), - "Пока нам известен только один такой уникальный блуждающий космический объект, как звезда US 708, ускорение которого было последствием близкого взрыва сверхновой. И если нам удастся обнаружить еще подобные объекты, то они смогут нам рассказать много нового о сверхновых звездах".
 Двигаясь с ее нынешней скоростью, звезда US 708 покинет пределы Млечного Пути через 25 миллионов лет, постепенно охлаждаясь и превращаясь в белого карлика. Звезда US 708 была обнаружена впервые в 2005 году, но астрономическое оборудование десятилетней давности позволило только определить скорость и направление ее движения. И лишь только недавно астрономы получили возможность измерить и ряд других параметров звезды, в частности, скорость ее вращения вокруг своей оси. И все эти параметры почти идеально соответствуют разработанной в 2009 году математической модели процесса ускорения звезды энергией взрыва сверхновой.
 "Мы сделали большой шаг в понимании процессов взрывов сверхновых типа 1A" - рассказывает Штефан Гайер, - "Эти чрезвычайно яркие и мощные явления уже достаточно давно используются людьми в качестве космических "маяков", позволяющих нам измерять расстояния и изучать процесс расширения Вселенной. Но до последнего времени "прародители" этих явлений были малоизученны и практически неизвестны".

Поиски суперсимметрии на коллайдере принесли новую интригу

Две коллаборации, работающие на Большом адронном коллайдере, сообщают, что в одном из многочисленных поисков суперсимметрии обнаружилось небольшое превышение над предсказаниями Стандартной модели. Оба коллектива видят отклонение в схожих, но всё же не идентичных, процессах. 
Статистическая значимость превышения невелика, около 3 стандартных отклонений, но это превышение дает новую надежду на то, что физика за пределами Стандартной модели уже не за горами.

Физика элементарных частиц сегодня: краткий набросок

  Современная физика элементарных частиц находится последние годы в достаточно некомфортной ситуации. С одной стороны, в ее распоряжении есть теория — так называемая Стандартная модель, — которая замечательно согласуется с экспериментами. Она была построена в 60-70-е годы, привела к множеству предсказаний, которые великолепно подтвердились в последующие десятилетия. Последним в этой серии достижений стало открытие бозона Хиггса в 2012 году и последовавшее за ним присуждение Нобелевской премии по физике авторам хиггсовского механизма. Все эти годы Стандартная модель выдерживала тысячи экспериментальных проверок. Всевозможные тонкие и замысловатые эффекты, которые она предсказывала и которые удавалось сосчитать теоретически, неизменно подтверждались.

  С другой же стороны, физикам давно достоверно известно, что Стандартная модель не может быть окончательной теорией устройства микромира. Стандартная модель не способна объяснить наличие темной материи и доминирование вещества над антивеществом в нашей Вселенной. Она никак не объясняет разнообразные закономерности, которые обнаружены в свойствах кварков и особенно нейтрино. Наконец, многие численные величины в ней выглядят противоестественными, и сама Стандартная модель никакого объяснения им не дает. Физики уверены, что Стандартная модель — это лишь осколок какой-то другой, всеобъемлющей и более фундаментальной, теории устройства нашего мира, которую ученые условно называют физика за пределами Стандартной модели или «Новая физика». Что это за теория — пока неизвестно, но именно с ней связываются большие надежды на поиск ответов на неудобные для Стандартной модели вопросы.

  Чтобы не создавалось неправильного впечатления, надо обязательно оговориться, что проблема — не в том, чтобы придумать хоть какую-то теорию. Таких теорий придуманы, наверное, сотни. Проблема в том, чтобы теория давала новые, нестандартные предсказания и чтобы эти предсказания подтверждались на опыте. А вот с этим пока сложности: ни один прямой эксперимент с элементарными частицами не обнаружил никакого достоверного отклонения от Стандартной модели. Так что Большой адронный коллайдер (он же LHC) — это не просто установка, которая сталкивает частицы и что-то там измеряет. Это тот инструмент, который должен помочь нам дотянуться до Новой физики, до нового пласта реальности, лежащего под Стандартной моделью. Первый маленький шаг в этом направлении сделан: открыт хиггсовский бозон и началось его изучение. Но это был подготовительный шаг, а настоящая задача коллайдера — достоверное обнаружение хоть какого-то отклонения от Стандартной модели — пока не решена.

Как ищут проявления суперсимметрии

  Поскольку теорий Новой физики много и предсказывают они разные явления, исследователи выполняют сотни различных анализов накопленных на LHC данных и ищут в них эти эффекты. Среди всех моделей особняком стоят теории, опирающиеся на суперсимметрию. Это слово обозначает глубокую, математически самосогласованную идею о том, что наш мир обладает симметрией нового типа, которая связывает между собой, говоря совсем условно, частицы материи и действующие между ними силы.

  Идея суперсимметрии проверяема в эксперименте, по крайней мере в принципе. Суперсимметричные теории предсказывают множество новых частиц, суперпартнеров обычных частиц. У кварков, глюонов, лептонов, гравитонов и всех других частиц есть суперпартнеры: скварки, глюино, слептоны, гравитино и т.д. — 
Top quark
Standard - model particles
Hypothetical SUSY particles
Stop
squark,Всё самое интересное,интересное, познавательное,,разное,The Brights,физика,наука
Проблема только в том, что эти новые частицы — тяжелые, и никто не может заранее сказать, насколько. Когда строился Большой адронный коллайдер, среди физиков царило воодушевление. Многие из них считали, что массы суперчастиц находятся в районе 1 ТэВ или даже меньше, и такие частицы начнут массово рождаться на LHC. Увы, первый сеанс работы коллайдера охладил этот пыл: многочисленные поиски прямых или косвенных проявлений суперсимметрии по-прежнему дают отрицательные результаты.

Сейчас, после двух недавних любопытных публикацией CMS и ATLAS, ситуация, возможно, начнет меняться. Но прежде чем рассказывать о них самих, стоит кратко обрисовать, как вообще ищут проявления суперсимметрии на коллайдере.

Сложность тут в том, что у суперсимметрии нет какого-то одного конкретного, железобетонного предсказания, проверяемого прямо сейчас. Имеется большое количество вариантов суперсимметричных теорий, а в них есть неизвестные численные параметры. В результате предсказания для коллайдера могут получиться самые разнообразные — и физики стараются, по возможности, охватить их все. Среди них выделяется главное направление поисков —
столкновение
протонов
Ж
глюино
/ > ¿о
скварк
Л/
\>
нейтралино
кварки -> адроны,Всё самое интересное,интересное, познавательное,,разное,The Brights,физика,наука
рис.3
Считается, что вначале в столкновении протонов рождаются сильновзаимодействующие суперчастицы — скварки или глюино. Они тяжелые и распадаются на другие, те — распадаются дальше, и т.д. Так идет до тех пор, пока не появится легчайшая суперсимметричная частица (в зависимости от варианта теории, это может быть нейтралино, гравитино или другие суперчастицы). Главное, что она уже ни на что не распадается, а просто улетает прочь, не будучи даже пойманной детектором. Эта частица уносит большой поперечный импульс, который — в силу неуловимости частицы — не отслеживается детектором. Детектор регистрирует все обычные частицы, измеряет их импульсы и видит, что они не складываются в нуль, то есть заметная часть импульса «теряется». Такой дисбаланс в поперечном импульсе указывает на то, что в столкновении родилась какая-то неуловимая частица высокой энергии.

  Конечно, одного лишь дисбаланса поперечного импульса мало для открытия Новой физики. В Стандартной модели тоже есть частицы, не регистрируемые детектором, — нейтрино, — и они запросто могут породить похожую картину столкновений. Вдобавок, детекторы неидеальны, и иногда они ошибаются при измерении энергий и импульсов (особенно когда приходится мерять адронные струи, целые потоки адронов) или даже могут неправильно идентифицировать пролетевшую частицу. Поэтому в реальности физикам приходится тщательно сравнивать полученные данные с предсказаниями Стандартной модели и пытаться найти не просто какую-то статистику событий, а их превышение над фоном Стандартной модели. Так что каждый поиск, каждый анализ — это кропотливая работа десятков и сотен исследователей в течение месяцев или даже лет.

Новые результаты CMS и ATLAS

  После обстоятельного вступления перейдем наконец к новым результатам с коллайдера. Сейчас, в преддверии нового запуска LHC, экспериментальные группы «подчищают хвосты» — доделывают трудоемкие анализы на основе данных, набранных во время первых трех лет работы коллайдера. Регулярно появляются и статьи о тех или иных поисках суперсимметрии, но все они пока приводят к отрицательным результатам. Однако за последний месяц обе крупнейшие коллаборации, работающие на LHC, сообщили о наблюдении любопытных отклонений в похожих — но не идентичных! — конфигурациях частиц. Статья коллаборации CMS появилась в конце февраля, а работа ATLAS — в середине марта, буквально на днях [1, 2].

  В обеих работах физики изучали события следующего типа: наблюдаются как минимум две адронные струи, лептонная пара (электрон-позитрон или мюон-антимюон) и потерянный поперечный импульс. На рис. 3 показаны два примера процессов с рождением и распадом суперсимметричных частиц, которые могли бы порождать такие события. Конечно, существуют и обычные (фоновые) процессы, которые дают такой же сигнал. Например, в столкновении протонов может просто родиться Z-бозон, который распадется на лептонную пару, а уж адроны всегда рождаются в избытке. Если детектор неправильно сосчитает энергию адронных струй, вполне может появиться дисбаланс поперечного импульса. Однако в этом случае дисбаланс будет небольшим, порядка десятков ГэВ. Чтобы избавиться от него, физики отобрали только такие события, в которых дисбаланс составлял как минимум сотню ГэВ (в случае ATLAS — 225 ГэВ). Есть и другие источники фона, но все их физики аккуратно учли.

  Два типа сигналов, показанные на рисунке — Отличаются поведением лептонной пары. На верхней картинке показано нерезонансное рождение лептонов, в котором они излучаются независимо друг от друга. В этом случае энергии двух лептонов не связаны друг с другом, а значит, инвариантная масса этой пары (mll) может быть самой разной, и большой, и маленькой. На нее имеется лишь ограничение сверху, поскольку эти лептоны получаются из распадов тяжелых частиц. С точки зрения эксперимента, характерный сигнал таких событий выглядит так: имеется широкое распределение по mll, которое вдруг обрывается выше некоторого значения. Именно этот «обрыв распределения» и искали физики.

  На нижней картинке на рисунке —  — показан другой вариант — резонансное рождение лептонной пары. Здесь лептоны рождаются не сами по себе, а получаются в результате распада Z-бозона. Поэтому их энергии скоррелированы, а инвариантная масса пары близка к массе Z-бозона (91 ГэВ). Поэтому в поисках такого типа событий можно сфокусироваться на области от 81 до 101 ГэВ, а участок распределения вне ее, наоборот, использовать для оценки фона.

  Два коллектива — CMS и ATLAS — выполнили оба типа поисков, правда со слегка отличающимися критериями отбора. Но вот результаты у них получились разными. CMS сообщает, что в случае нерезонансного рождения на рисунке вверху —  — в области mll от 20 до 70 ГэВ наблюдается некоторое превышение числа событий над фоном, с обрывом распределения при значении около 71 ГэВ. Статистическая значимость отклонения оценена в 2,4σ. Эффект, конечно, не слишком впечатляющий, но тем не менее заслуживает интереса, тем более что это был один из первых поисков суперсимметрии методом обрыва распределения. В случае резонансного рождения коллаборация CMS не видит никаких отклонений.

Результаты ATLAS получились прямо противоположными. Нерезонансный поиск ничего существенного не выявил, зато в резонансном рождении было найдено любопытное отклонение. На рисунке — 
Events / 2.5 GeV
14
12
10
8
6
n I I I I | I I I | I I I | I I I | I I I | I I I | I I I | I I I | I I I | r
—Data
Standard Modal /£ = 8 TeV. 20.3 fb'1 I	I Flavour Symmetric
I	I Other Backgrounds
 m(g)ji=(700.200)GeV_!
 m(g)n=(900.600)GeV
ATLAS
- SR-Z ee
>
<D
CD
in
c\j
c
o
>
LU
 — показано распределение по инвариантной массе электронной или мюонной пары. Бросается в глаза то, насколько малый тут фон и насколько сильным оказался сигнал. В случае CMS всё выглядело иначе: был большой фон, и на нем физики разглядели небольшое превышение. Тут же в электрон-позитронном канале ожидалось примерно 4±2 события, а обнаружено — аж 16! В мюонном случае превышение заметно слабее, но тоже кое-что наблюдается. Невооруженному взгляду может показаться, что левый график на рисунке — 
Events / 2.5 GeV
14
12
10
8
6
n I I I I | I I I | I I I | I I I | I I I | I I I | I I I | I I I | I I I | r
—Data
Standard Modal /£ = 8 TeV. 20.3 fb'1 I	I Flavour Symmetric
I	I Other Backgrounds
 m(g)ji=(700.200)GeV_!
 m(g)n=(900.600)GeV
ATLAS
- SR-Z ee
>
<D
CD
in
c\j
c
o
>
LU
 — прямо-таки кричит: открытие! Однако аккуратный анализ более сдержан: статистическая значимость отклонения в электронном канале (а также в объединенном лептонном) составляет 3σ.

Конечно, сейчас пока рано утверждать, что в коллайдере действительно было открыто явление, достоверно выходящее за рамки Стандартной модели. Отклонения порядка 3σ считаются указанием на существование, но никак не открытием. Такое отклонение вполне может оказаться статистической флуктуацией или неучтенной погрешностью детектора. В физике частиц встречались примеры, когда по прошествии некоторого времени рассасывались сигналы и с большей статистической значимостью. Настораживает также и то, что два детектора получили несогласующиеся результаты. Конечно, методики у них немножко разные, и никто не обещает, что отклонения в одном эксперименте обязательно подтвердятся в другом. Тем не менее после этого первого «захода» оба детектора наверняка будут уделять повышенное внимание этому процессу. Ну и, разумеется, у физиков появляется дополнительный повод с нетерпением ожидать результаты нового сеанса работы коллайдера LHC Run II, который за три года должен увеличить статистику почти на порядок.

Игорь Иванов

1. Search for physics beyond the standard model in events with two leptons, jets, and missing transverse momentum in pp collisions at sqrt(s) = 8 TeV. ArXiv:1502.06031 — http://arxiv.org/abs/1502.06031
2. Search for supersymmetry in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s√=8 TeV pp collisions with the ATLAS detector. ArXiv:1503.03290 — http://arxiv.org/abs/1503.03290

Источник — http://elementy.ru/news/432428

Хорошее — враг лучшего?

  В 1942 г. в эксперименте, ставшем классическим, американский психолог Абрахам Лачинс (Abraham Luchins) просил добровольцев провести некоторые вычисления, мысленно представив сосуды с жидкостью. Например, надо было, используя три пустых сосуда емкостью 21 л, 127 л и 3 л, перелить жидкость таким образом, чтобы отмерить 100 л. Наливать и выливать жидкость можно было неограниченное количество раз, но сосуды следовало наполнять полностью. Решение заключалось в том, чтобы из сосуда емкостью 127 л вылить сначала 21 л, а потом два раза по 3 л. Лачинс предложил испытуемым несколько задач, которые фактически решались с помощью таких же трех этапов, и эти задачи были быстро решены. А потом он дал им задачу, имеющую более простое и быстрое решение, но люди этого решения не заметили.

  Лачинс предложил участникам эксперимента отмерить 20 л, используя сосуды емкостью 23 л, 49 л и 3 л. Вроде бы решение очевидно: наполнить первый контейнер и часть воды из него вылить в третий: 23 — 3 = 20.

  Но многие испытуемые продолжали решать задачу старым способом, используя второй контейнер: 49-23-3-3 = 20. А потом Лачинс предложил им задачу, для которой существовало решение только из двух этапов, но не из трех, к которому привыкли участники, и они сдались, сказав, что это невозможно.

  Эксперимент с переливанием воды — один из самых известных экспериментов, иллюстрирующих склонность человеческого мозга цепляться за знакомый способ решения, первый пришедший в голову, и игнорировать остальные. Обычно такой способ мышления бывает полезен. Если вы научились, например, очищать зубчики чеснока, то нет смысла искать другие способы каждый раз, когда вам понадобится очистить очередной зубчик. Но проблема в том, что иногда это лишает человека возможности увидеть более эффективное и адекватное решение.

  После того как была проведена работа Лачинса, психологи наблюдали этот эффект во многих лабораторных исследованиях как у новичков, так и у специалистов в решении тех или иных интеллектуальных задач, но как и почему это происходит, оставалось загадкой. Недавно мы раскрыли эту тайну, записав движения глаз у шахматистов высокого уровня. Оказалось, что, имея готовое решение, люди в буквальном смысле не видят некоторые детали, которые могли бы обеспечить более эффективный вариант. Кроме того, это новое исследование показывает, что множество разных когнитивных искажений, описанных психологами за многие годы, в том числе на судебных заседаниях и в больницах, по своей сути — разные варианты эффекта Лачинса.

➡  Вернуться на исходную позицию

С начала 1990-х гг. психологи, изучающие эффект Лачинса, привлекали в качестве испытуемых шахматистов разного уровня, от дилетантов до гроссмейстеров. В этих экспериментах игрокам предъявляли виртуальные доски с определенным образом расположенными на них фигурами и просили поставить мат за минимальное число ходов. Например, в нашем исследовании опытным игрокам предлагали позиции, в которых можно было использовать хорошо известную комбинацию «спертый мат». В этой пятишаговой комбинации ферзь приносится в жертву таким образом, что противник одной из своих фигур перекрывает выход собственному королю. Кроме того, можно было поставить мат в три хода, используя значительно менее известную тактику. Как и в экспериментах Лачинса с переливанием воды, большинство игроков не смогли обнаружить более быстрое решение — 
  Во время некоторых исследований мы спрашивали шахматистов, о чем они думали. Они говорили, что нашли решение со спертым матом и искали более короткое, по безуспешно. Но словесные отчеты никак не объясняли, почему не было найдено более короткое решение. В 2007 г. мы попробовали применить немного более объективный метод: прослеживание движений глаз с помощью инфракрасной камеры. Мы смогли точно выяснить, на какую область доски смотрят люди и насколько они задерживают взгляд, чтобы понять, какие части задачи замечаются, а какие — игнорируются.

  Во время этого эксперимента мы прослеживали взгляд пяти опытных шахматных игроков, когда они смотрели на доску, где можно было поставить спертый мат в пять ходов или более короткий за три хода. В среднем после 37 секунд все игроки сказали, что спертый мат — самый быстрый способ. Однако, когда мы предъявили им задачу, которая могла быть решена только с помощью варианта с тремя ходами, они решили ее без проблем. А когда мы сказали игрокам, что аналогичное быстрое решение было и в предыдущем случае, они были изумлены. Один из игроков воскликнул: «Это невозможно. Я бы заметил такое простое решение». Очевидно, что сама возможность использовать спертый мат замаскировала остальные решения. Фактически эффект Лачинса оказался достаточно силен, чтобы временно снизить способности шахматистов-профессионалов до уровня слабых игроков.

  Использование инфракрасной камеры позволило показать, что даже когда игроки говорили, что искали более быстрый вариант решения, и они действительно верили, что ищут его, они на самом деле не отводили взгляда от того участка на доске, где они собирались провести спертый мат. И наоборот, когда им предъявили партию, где было возможно только одно решение, игроки в первую очередь посмотрели туда, где предполагали разыграть спертый мат, и, только убедившись, что это не получится, перенаправили внимание в другие стороны и быстро нашли кратчайшее решение.

➡  Почва для когнитивных искажений

  В октябре прошлого года Хизер Шеридан (Heather Sheridan) из Саутгемптонского университета и Эяль Рейнгольд (Eyal М. Reingold) из Университета Торонто опубликовали работу, которая подтверждает и дополняет наши эксперименты с отслеживанием движений глаз. 17 начинающим шахматистам и 17 профессиональным были предложены две разные задачи. В одной из них можно было использовать известный способ, такой как спертый мат, но имелось другое, лучшее, но менее очевидное решение. Во второй задаче более знакомая последовательность была не эффективна. В этой работе, как и в наших экспериментах, взгляд шахматистов был направлен на область, где было знакомое решение, и редко попадал туда, где можно было заметить лучшую возможность действий. Однако в случае, когда хорошо знакомая стратегия была очевидно непригодной, и мастера и новички замечали альтернативный вариант.

  Эффект Лачинса отнюдь не исчерпывается контролируемыми лабораторными экспериментами и сложными логическими играми, такими как шахматы. Он лежит в основе многих когнитивных искажений. Английский философ, ученый и писатель Фрэнсис Бэкон в 1620 г. в своей книге «Новый органон» очень выразительно писал об одном из наиболее распространенных когнитивных искажений: «Разум человека все привлекает для поддержки и согласия с тем, что он однажды принял потому ли, что это предмет общей веры, или потому, что это ему нравится. Каковы бы ни были сила и число фактов, свидетельствующих о противном, разум или не замечает их, или пренебрегает ими, или отводит и отвергает их. Люди отмечают то событие, которое исполнилось, и без внимания проходят мимо того, которое обмануло, хотя последнее бывает гораздо чаще. Еще глубже проникает это зло в философию и в науки. В них то, что раз признано, заражает и подчиняет себе остальное, хотя бы последнее было значительно лучше и тверже».

  В 1960-х гг. английский психолог Питер Уэйсон (Peter Wason) назвал такой тип искажений «предвзятость подтверждения». В контролируемых экспериментах он показал, что даже если люди намерены объективно проверить правильность теории, они склонны находить подтверждения собственной правоте и не замечать того, что этому противоречит.

  В книге «Ложное измерение человека» ученый Стивен Джей Гулд (Stephen Jay Gould) из Гарвардского университета переосмыслил данные исследователей, предполагавших, что уровень интеллекта связан с размером мозга, и пытающихся сравнивать интеллект у людей различных рас, разного пола и социального положения путем измерения объема черепа или веса мозга. Гулд показал, что полученную информацию анализировали некорректно. Французский ученый Поль Брока, обнаружив, что у французов мозг в среднем меньше, чем у немцев, объяснил это разницей средних размеров тела у людей этих двух национальностей. Ведь не мог же он сказать, что французы глупее немцев. Однако, когда оказалось, что женский мозг меньше мужского, ученый и не вспомнил о различии в размерах мужчин и женщин, т.к. в то время можно было беспрепятственно утверждать, что женщины глупее мужчин.

  Но, как это ни странно, Гулд пришел к выводу, что Брока и другие исследователи не были настолько непорядочными, как мы могли предполагать. Гулд писал: «Для большинства случаев, описанных в этой книге, мы можем быть практически уверены, что предубеждения учеными не осознавались и исследователи верили, что движутся по направлению к истине». Другими словами, Брока и его современники были ослеплены хорошо знакомыми идеями так же, как шахматисты в наших экспериментах. В этом и заключается опасность эффекта Лачинса. Мы можем верить, что наше мышление непредвзято, не подозревая, что мозг избирательно направляет внимание не туда, где можно обнаружить новые идеи. Любая информация, которая не вписывается в теорию, за которую мы уже зацепились, игнорируется или отбрасывается.

  При анализе судебных и врачебных ошибок становится очевидным, что скрытый характер предвзятости подтверждения может приводить к нехорошим последствиям в повседневной жизни. В обзоре, посвященном медицинским ошибкам, врач Джером Групман (Jerome Groopman) отмечает, что в большинстве случаев неправильного диагноза «врачи ошибались не из-за своего незнания, но потому, что попадали в когнитивную ловушку». Когда врач получает пациента от другого врача, первоначальный диагноз может помешать увидеть противоречащие ему важные симптомы, на основе которых следовало изменить вердикт. Проще принять уже существующую версию, чем заново переосмысливать ситуацию. Точно так же рентгенолог при просмотре результатов флюорографии часто фиксируется на первом замеченном отклонении и пропускает другие нарушения, например опухоль, которая может означать наличие рака. Но если это нарушение встречается само по себе, рентгенолог сразу его заметит.

  В других исследованиях показано, что присяжные начинают решать, виновен ли человек, задолго до того, как будут предъявлены все доказательства. В свою очередь, их первые впечатления от подсудимого меняют их отношение к последующим доказательствам и воспоминания о тех доказательствах, которые были увидены ранее. Аналогично, если при приеме на работу кандидат покажется симпатичным, то его интеллект и личные качества будут восприниматься в более благоприятном ключе, и наоборот. Это тоже проявление эффекта Лачинса. Легче принять решение о ком-то на основе целостного представления о человеке, а не на основе противоречащих друг другу сведений.

  Можно ли научиться не поддаваться этому эффекту? Вероятно, да. В наших экспериментах с шахматистами и в последующих опытах Шеридан и Рейнгольда некоторые особенно хорошие шахматисты уровня гроссмейстера сумели обнаружить короткое решение и при наличии знакомого более длинного. Это значит, что чем опытнее человек в своей области, будь то шахматы, наука или медицина, тем выше у него устойчивость к когнитивным искажениям.

  Но полностью никто не застрахован, и гроссмейстеры ошибались, когда мы сделали ситуацию более каверзной. Еще один способ противодействия эффекту Лачинса — все время помнить о своей уязвимости для такого рода ошибок. При рассмотрении данных, например, об относительной роли природных и антропогенных факторов в формировании парникового эффекта помните, что если вам кажется, что вы уже знаете правильный ответ, то вы не сможете объективно оценивать информацию. Вы будете обращать внимание на те доказательства, которые поддерживают вашу точку зрения, сочтете их более значимыми и лучше запомните, чем те, которые противоречат вашим представлениям.

  Если мы хотим улучшить качество наших идей, нам надо учиться признавать свои ошибки. Чарлз Дарвин предложил для этого удивительно простой и эффективный метод: «...в течение многих лет я следовал золотому правилу: каждый раз, когда мне попадались в печати новые наблюдения или мысли, шедшие вразрез с моими общими выводами, неизменно и немедленно делать из них извлечение, так как я убедился на опыте, что они гораздо легче забываются, чем факты и мысли благоприятные».

Мерим Билалич, Питер Маклеод
Dwarf Galaxies and the Dark Web
Gene Therapy's Second Act
AMERICAN
Revolutionary tools will reveal how thoughts and emotions arise,Всё самое интересное,интересное, познавательное,,разное,The Brights,психология

«В мире науки» № 5, 2014. Стр. 31-35.

Редактирование геномов человека

  Китайские ученые первыми в мире сообщили о редактировании генома человеческого эмбриона. Результаты, опубликованные в онлайн-журнале Protein & Cell [1], подтверждают распространенные слухи о проведении подобных экспериментов — слухи, давшие начало резонансным дебатам, разразившимся в марте 2015 г. [2, 3] об этичности подобных работ.
,Реактор познавательный,галилео, реактор познавательный, интересности, интересное, #галилео,разное,The Brights,генная инженерия,эмбриология,биология,гмо-эмбирон
  Группа китайских ученых, возглавляемая Джунджу Хуаном (Junjiu Huang), исследователем функций генов в Университете Сан Ят-сен (Sun Yat-sen University, Китай), попыталась обойти проблемные вопросы, используя «нежизнеспособные» эмбрионы, которые не могут привести к рождению ребенка, полученные из местных клиник репродукции. Исследовательская группа провела попытку модификации гена, ответственного за β-талассемию — потенциально летального заболевания крови, — используя метод генетического редактирования CRISPR/Cas9. По словам ученых, их результаты позволили обнаружить серьезные препятствия на пути к использованию метода в медицинских целях.
Target Genomic Locus
Target sequence to cleave
Your guide RNA sequence
Motif
tracrRNA built into vectors
SVM
pol,1A)
□ RNA MjNold
Promoter
<CMV.tP1i.MSCV, RGK. CAO»
HI promoter
Cas9
SmartNuclease™ All-in-one Vector
EF1 a: cat#C AS900A-1, C AG cat#CAS92QA-l Cm. cat#CAS94QA-1. MSCV:
  «Я полагаю, что это первое сообщение о применении CRISPR/Cas9 на предимплантационных эмбрионах человека, и потому исследование является знаковым, так же как и предупреждающим, — говорит Джордж Дэли (George Daley), специалист в области стволовых клеток Гарвардской Медицинской Школы (Harvard Medical School, США), — Исследование должно стать жестким предостережением любым практикующим клиницистам, считающим, что данная технология пригодна для экспериментального устранения генов заболеваний».

  Некоторые специалисты утверждают, что технология генетического редактирования эмбрионов может стать светлым будущим из-за возможности устранения тяжелых генетических заболеваний еще до рождения ребенка. Однако противники полагают, что это поднимает этические вопросы: исследователи предупреждали в мартовском выпуске журнала Nature [2], что, поскольку генетические изменения эмбрионов — модификации зародышевой линии — наследуемы, они могут оказать непредсказуемое действие на будущие поколения. Исследователи также выражают озабоченность по поводу того, что любые работы по генетическому редактированию человеческих эмбрионов могут стать скользким путем к небезопасному или неэтичному использованию метода.

  Статья группы Хуана, похоже, снова разожгла споры, касающиеся генетического редактирования эмбрионов. Кроме того, согласно некоторым сведениям, и другие исследовательские группы в Китае проводят эксперименты на эмбрионах человека.

➡  Проблемный ген

  Метод, использованный группой Хуана, включает инъецирование в эмбрион ферментативного комплекса CRISPR/Cas9, связывающего и разрезающего ДНК в определенных участках. Этот комплекс можно настроить на вырезание проблемных генов, которые затем замещаются другой молекулой, введенной в то же время. Эта система хорошо изучена на клетках взрослого человека и эмбрионах животного. Однако до настоящего времени сообщений о применении подхода на эмбрионах человека опубликовано не было.

  Хуан и его коллеги намеревались проверить, может ли метод привести к замещению гена в одноклеточном оплодотворенном эмбрионе человека: все клетки, получающиеся в результате развития эмбриона в таком случае могли бы иметь замененный ген. Полученные из клиник репродукции эмбрионы были созданы с помощью метода экстракорпорального оплодотворения (ЭКО), но несли лишние хромосомы в результате оплодотворения двумя сперматозоидами. Такая аномалия делает невозможным живорождение, несмотря на то, что эмбрионы с лишними хромосомами проходят первые стадии развития.

  Группа Хуана исследовала способность системы CRISPR/Cas9 редактировать ген HBB, кодирующий белок β-глобин человека. Мутации в этом гене связаны с развитием β-талассемии.

➡  Серьезное препятствие

  Исследовательская группа инъецировала ферментативный комплекс 86 эмбрионам и ожидала в течение 48 часов — за это время эмбрионы делились примерно до 8 клеток каждый. Из 71 выжившего эмбриона 54 подверглись генетической диагностике. В ходе анализа было обнаружено, что только у 28 эмбрионов произошло вырезание мутантного гена, и только часть из них несла замещенный генетический материал. «Если вы хотите проделывать это на нормальных эмбрионах, то необходима точность, близкая к 100%. Вот почему мы остановились. Мы считаем, что метод еще слишком недоработан», — говорит Хуан.

  Кроме того, группа ученых обнаружила неожиданное количество нецелевых мутаций, предположительно внедренных комплексом CRISPR/Cas9, действовавшим в других частях генома. Этот эффект вызывает особенно много опасений вокруг зародышевого генетического редактирования, поскольку непредусмотренные мутации могут оказаться патогенными. Уровень таких мутаций гораздо выше, чем наблюдаемый при генетическом редактировании эмбрионов мышей или клеток взрослого человека. Как отмечает Хуан, его группа, вероятно, выявила только часть непреднамеренных мутаций, поскольку их исследование было обращено только на экзом (белок-кодирующую часть генома). «Если бы мы провели полногеномное секвенирование, то, вероятно, нашли бы больше мутаций», — отмечает исследователь.

➡  Этические вопросы

  По словам Хуана, его работа была отвергнута журналами Nature и Science, частично, из-за этических вопросов; оба журнала отказались давать комментарии.

  Хуан также добавляет, что критики статьи объясняют низкий уровень эффективности и высокую частоту нецелевых мутаций возможной особенностью аномальных эмбрионов, использованных в работе. Исследователь признает критику, но отмечает, что из-за отсутствия примеров генетического редактирования нормальных эмбрионов невозможно узнать, будет ли методика срабатывать в них иначе.

  И, тем не менее, он утверждает, что такие эмбрионы являются более значимой моделью, в том числе и более близкой к нормальным эмбрионам человека, чем эмбрионы модельных животных или клетки взрослого человека. «Мы хотели показать свои данные миру, чтобы люди знали, что действительно происходит в такой модели, вместо того, чтобы рассуждать о том, что могло бы произойти, не имея данных», — говорит Хуан.

  «Это подчеркивает сказанное ранее: в таких исследованиях необходима пауза, чтобы удостовериться, что мы обладаем достаточными основаниями для дискуссии о дальнейшем направлении развития», — утверждает Эдвард Ланфье (Edward Lanphier), один из исследователей, выступивших с предостережением в журнале Nature. Ланфье является президентом компании Sangamo BioSciences (США), применяющей технику генетического редактирования на клетках взрослого человека.

  В дальнейшем Хуан планирует работать над уменьшением числа нецелевых мутаций, используя неэмбриональные клетки человека или модельных животных. Он рассматривает несколько стратегий: корректировку ферментов на более точную направленность к желаемому месту, внедрение ферментов в другой форме, которая позволила бы регулировать их путь, или изменение концентрации вводимых ферментов и восстанавливающих молекул. Исследователь полагает, что также может принести пользу использование других методов генетического редактирования. Система CRISPR/Cas9 относительно эффективна и легка в использовании, однако известно, что еще одна система TALEN вызывает меньше непреднамеренных мутаций.

  Безусловно, споры вокруг генетического редактирования эмбрионов человека еще продолжатся, однако система CRISPR/Cas9 известна своей легкостью использования, потому Ланфье опасается, что еще больше исследователей начнут работать, пытаясь улучшить результаты Хуана. «Вседоступность и простота создания CRISPR дает возможность ученым в любой части света проводить любые эксперименты», — отмечает Ланфье.

  По некоторым данным, по меньшей мере еще четыре группы в Китае проводят эксперименты по генетическому редактированию эмбрионов человека.

1. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. 
Doi. 10.1007/s13238-015-0153-53. — http://link.springer.com/article/10.1007%2Fs13238-015-0153-5
2. Don’t edit the human germ line. Doi:10.1038/519410a. — http://www.nature.com/news/don-t-edit-the-human-germ-line-1.17111
3. A prudent path forward for genomic engineering and germline gene modification. Doi: 10.1126/science.aab1028. — http://www.sciencemag.org/content/348/6230/36
(ссылки иногда не открываются,не пугаемся,надеемся,ждем,обновляем страничку)
По материалам NatureNews — http://www.nature.com/news/ethics-of-embryo-editing-paper-divides-scientists-1.17410
Перевод — cbio.ru — http://cbio.ru/page/43/id/5706/

Гены, от которых вырастают крылья. И ноги. И всё остальное.

У каждого многоклеточного животного есть своё многоклеточное, только ему присущее тело. Любую муху мы можем отличить от слона. Это легко, ведь их тела соответствуют определённому плану строения. Для мухи, например, это шесть лап, крылья, сегменты тела. В то же время у слона конечностей меньше и крыльев нет. Но как этот особенный план записан в слоне или мухе? Если задуматься, то он должен быть уже в первой клетке, из которой разовьётся организм. И конечно, он записан в геноме этой первой клетки — в виде генов и межгенных регуляторных участков. Так можно ли сделать из мухи слона?

➡ Особенные гены для особенных задач

  Генетики часто используют в работе плодовую мушку. Как следствие, для неё известно впечатляющее количество нарушений в разных генах — мутаций. Мутации эти были выявлены в основном по изменению внешнего вида мухи. Например, есть гены, продукты которых — белки, синтезирующие красный пигмент в глазах насекомого. Благодаря этим генам у плодовой мушки дикого типа глаза красные. Если один из таких генов отключить, глаза лишатся пигмента и мухи-мутанты будут белоглазыми. Повреждения тех или иных генов могут вообще лишить насекомое глаз, или щетинок, или окраски тела. Но есть мутации, эффект от которых намного более драматичен.

  В конце 40-х годов ХХ века биологам попалась муха с ногами вместо антенн на голове. Ноги на голове — это уже не просто другой цвет глаз!
АНТЕННЫ,Реактор познавательный,галилео, реактор познавательный, интересности, интересное, #галилео,разное,эволюция,генетика,энтомология
 
  Такое происшествие — не «потеря чего-то», а «превращение одного в другое». Или ещё пример. Мушиная грудь состоит из трёх сегментов, на втором из которых располагаются крылья. Известны мутанты, у которых третий сегмент груди превращён во второй, и муха имеет две пары крыльев. Вы не задумывались, как появились четырёхкрылые бабочки? Их предкам было достаточно сохранить мутации, приводящие к развитию лишних, но столь пригодившихся им крыльев.
,Реактор познавательный,галилео, реактор познавательный, интересности, интересное, #галилео,разное,эволюция,генетика,энтомология

  Мутации, вызывающие превращение одних частей тела в другие, назвали гомеозисными (от лат. homеo — подобный). Можно определить, где произошла та или иная мутация, и выяснить, какой именно ген она повредила. Такие гены были найдены, их тоже назвали гомеозисными. Насколько эти гены распространены у живых организмов и можно ли найти их у человека? Явные следы сегментации тел млекопитающих остались в строении скелета. Вы знаете, что бывают люди, у которых обе челюсти — верхние? Что можно легко превратить спинные позвонки мыши в грудные, выключая определённые гены? Подобно тому как мухе можно «подарить» вторую пару крыльев, мыши можно легко обеспечить дополнительную пару рёбер. И не одну. Это тоже результат мутаций в гомеозисных генах. Как выяснилось, они есть у всех многоклеточных организмов.

➡ Раскрой мне свои гомеозисные гены, и я скажу, кто ты

  Вообще говоря, где грань между мутацией и нормой? Вы обидитесь на слова о лишней паре крыльев, если вы бабочка. Замечания об избыточных ногах, возможно, расстроят креветку. А у неё просто работает ген, который у мухи отключён, и потому она имеет не шесть ног, а десять.

  Гомеозисные гены у всех организмов очень похожи. Вероятно, с задачей планирования своего тела столкнулось уже первое многоклеточное животное. И решение этой задачи унаследовали все современные животные. Например, у мучного жука есть восемь гомеозисных генов, которые расположены в геноме поблизости друг от друга — в составе одного генного кластера. У плодовой мушки таких генов тоже восемь, но расположены они двумя группами далеко друг от друга. Вероятно, такая ситуация возникла из-за хромосомной перестройки, в результате которой исходный комплекс разделился надвое, но сохранил работоспособность. Большинство насекомых в этом смысле похожи на мучного жука. Похожа на мучного жука и мышь. У неё группа гомеозисных генов, аналогичная генам насекомых, расположена в едином кластере. Только таких кластеров — четыре. Очевидно, они возникли в результате последовательного удвоения одиночной предковой группы генов. Гомеозисных генов у мыши в несколько раз больше, чем у мухи, но все они похожи на восемь мушиных и, вероятно, возникли за счёт удвоения исходных генов и последующей самостоятельной эволюции.
Муха
Мышь
1аЬ рЬ	Díd	$сг	Апф ,, иЬх аМ-А АМ-В
Г> Г) Е П.// В
Д, Л Л Л 4,...
Ь1 Ь2 ЬЗ Ь4 Ь5 Ь6 кластер 1
а1 а2 аЗ а4 а5 аб
()□ В Р В' Р
кластер 2
(I
с4 с5	аб
. Е В
кластер 3
Ь7 Ь8 Ь9
  £ В___________________
а7
а9 аЮ	а11
Д □	Д
а13
с8 с9 с10	с11	с12	с13
сЛ ггп	63 "ТТ	64	68	69	610

  В целом просматривается связь: чем сложнее устроен организм животного, тем больше у него гомеозисных генов. Так, у всех беспозвоночных есть только один содержащий их кластер. При этом у таких примитивных организмов, как губки, в нём всего один либо два гена. А вот у примитивных позвоночных — миног — уже четыре кластера, как у мыши. Кстати, первые гомеозисные мутации были обнаружены и описаны у растений… Например, на месте лепестков могут появляться тычинки.

➡ Сферы влияния

  Гомеозисные мутации у плодовой мушки обнаружили давно, в начале XX века, и с тех пор описали большое их количество. Как позже выяснилось, не все они расположены в генах. Но тогда генетики ещё не знали, что же, если не гены, может быть повреждено мутациями. Понимание принципов работы гомеозисных генов росло параллельно с развитием биологии, и едва ли не всем новым фактам о работе генома находилось место в кластерах гомеозисных генов. Часто изучение самих гомеозисных генов рождало новые знания, — многие генетические механизмы впервые были показаны именно на них. Попробуем разобраться, к чему это привело.

  Лучше всего изучен комплекс гомеозисных генов плодовой мушки Bithorax («двойная грудь»), названный по найденной в нём мутации, которую обнаружили почти сто лет назад, в 1915 году. Bithorax-комплекс — это отделившаяся часть единого предкового комплекса гомеозисных генов. Он ответственен за развитие задних двух третей тела мухи. Первая треть тела контролируется другой частью разделившегося кластера — комплексом Antennapedia («ноги-вместо-антенн»). Может, не очень понятно, почему целый комплекс, отвечающий за формирование первой трети тела, назван в честь головных антенн, но слишком уж была примечательна мутация, превращающая антенны в ноги.
Ubx	abd-A
Abd-B,Реактор познавательный,галилео, реактор познавательный, интересности, интересное, #галилео,разное,эволюция,генетика,энтомология
(Схема Bithorax-комплекса генов плодовой мушки. Цвета сегментов тела мухи отвечают участкам комплекса генов того же цвета, мутации в которых влияют на эти сегменты. Стрелками обозначены гомеозисные гены Ubx, аbd-A, Abd-B.)

  Когда разных мутаций в Bithorax-комплексе обнаружили несколько десятков, удалось вывести соответствие между их положением в геноме и частью тела мухи, в которой возникает нарушение. В комплексе всего три гена. Но именно они определяют строение девяти сегментов тела. Более удивительно, что многие участки Bithorax-комплекса, влияющие на целый сегмент, вообще лишены генов. Число таких участков влияния соответствует числу сегментов тела, подчинённых Bithorax-комплексу.

  С развитием методов молекулярной биологии в 80-е годы XX века выяснилось, что в разных сегментах тела три гена Bithorax-комплекса работают по-разному. Стало очевидно, что работа генов эукариот (организмов, чьи клетки содержат ядра) может регулироваться отдалёнными участками ДНК, в которых генов нет. В этих участках могут находиться последовательности-энхансеры*, усиливающие работу гена, либо последовательности-сайленсеры**, способные работу гена прекратить. Причём энхансеры и сайленсеры сами могут быть отрегулированы: в каких-то тканях быть выключенными, а в каких-то других работать. Каждый цветной блок на рисунке вверху — это кластер регуляторных последовательностей, ключевых для правильного развития соответствующего сегмента тела. Именно под их управлением работа трёх генов Bithorax-комплекса различна в каждом сегменте. В свою очередь за счёт уникального сочетания продуктов гомеозисных генов в каждом сегменте они развиваются по-разному. Как так получается, что в каждом сегменте тела работает только свой уникальный регуляторный участок ДНК для гомеозисных генов? Сейчас этот вопрос активно изучается, но чёткого ответа на него пока нет.

  Продукты гомеозисных генов — белки, которые связываются с ДНК и влияют на работу других генов. В результате «под ними» работают десятки генов, уникальная настройка которых позволяет выпустить крылья или отрастить ноги. Итак, понятно, как за счёт разной работы гомеозисных генов в теле появляется с десяток сегментов (в каждом из которых эти гены работают по-своему), но непонятно, за счёт чего возникают различия внутри сегмента. Почему, например, такие разные части тела, как крылья и ноги, находятся в одном сегменте? Ответ кроется в структуре регуляторных участков Bithorax-комплекса. Они включают энхансеры и сайленсеры для гомеозисных генов. В каждом сегменте тела главную роль играет один из регуляторных участков, но в разных тканях этого сегмента он ведёт себя по-разному, поскольку в разных тканях активны разные энхансеры и сайленсеры. Так один регуляторный участок может обеспечить тонкие различия в работе гомеозисных генов в каждом типе тканей одного сегмента. Откуда регуляторная ДНК «знает», в какой ткани ей работать, а в какой молчать? Скажем лишь, что она знает это намного лучше нас… У нас же на этот счёт есть лишь ряд гипотез.

➡ Планы изменились

  Сотни миллионов лет эволюция «лепила» животных, меняя их тела. Комплексы гомеозисных генов — ключевая деталь в конструкторе тела. Чтобы поверить, что этот конструктор способен на самые разные фокусы, можно взглянуть на муху и, скажем, кита.

  Вам уже надоел детский Лего? Конечно, до создания новых тел ещё далеко и последствия таких действий неочевидны, но мы постепенно начинаем разбираться в правилах сборки. Можно идти путём эволюции. Например, чтобы понять, что требуется для образования конечностей, можно попробовать сравнить работу гомеозисных генов у рыб и мышей. Как считается, наши руки и ноги в ходе эволюции возникли из плавников. Было замечено, что активность одного из гомеозисных генов у мышей выше, чем у рыб. Исследователи предприняли попытку усилить его работу у рыб в надежде, что их плавники станут похожими если и не на мышиные лапы, то хотя бы на их примитивный аналог. В новых условиях костная ткань в плавниках развивалась активнее, форма плавников стала округлой и более близкой к форме лап. Конечно, это лишь намёк на настоящие ноги. Скорее всего, на пути к выходу на сушу у рыб менялась не только работа самих гомеозисных генов, но и ответ на неё других генов.

  За последние сто лет, прошедшие со времени открытия первых мутантных мух с ногами на голове и лишними крыльями, мы поняли, почему подобные изменения возникают. Мы даже можем планомерно влиять на строение тела мухи, мыши или рыбы, меняя их геном. При этом до полного понимания того, как строение тела записано в геноме, ещё далеко. Но по крайней мере теперь мы можем многое сказать на тему, почему муха так непохожа на слона.

* Энхансеры (от англ. enhance — усиливать) — последовательности ДНК, связывающие белки-активаторы и способные усиливать работу генов.

** Сайленсеры (от англ. silence — подавлять) — последовательности ДНК, связывающие белки, негативно влияющие на работу окружающих генов.

Автор: Павел Елизарьев. Институт биологии гена РАН.

Источник: http://www.nkj.ru/archive/articles/23728/
,Всё самое интересное,интересное, познавательное,,разное,камуфляж
Австрийская торговая марка Organic Look продолжает уже достаточно длительный период работать над развитием эффективной системы модульного камуфлирования под названием MTC-M (Modular Three-dimensionnal Concealment Material). Вся система основана на специальном синтетическом материале, который окрашен в природные цвета, гидрофобен, огнеупорен, устойчив к выгоранию и продолжает камуфлировать в УФ и ИК-спектре.

Материал надрезается на бесформенные лоскуты, образовывая так называемые гирлянды, которые могут дополнять уже существующий камуфляж, или образовывать совершенно новые структуры в зависимости от окружения. Элементы камуфляжа, которые образовывают целостный объёмный камуфляж, могут крепиться к одежде или к элементам снаряжения используя обычные пластиковые хомуты.

На данный момент Organic Look одиннадцать вариантов оттенков MTC-M, сочетание которых позволяет очень эффективно адаптироваться практически под любой тип местности и окружения.
Примеры(к сожалению одного размера так и не нашел):
,Всё самое интересное,интересное, познавательное,,разное,камуфляж
,Всё самое интересное,интересное, познавательное,,разное,камуфляж
,Всё самое интересное,интересное, познавательное,,разное,камуфляж
,Всё самое интересное,интересное, познавательное,,разное,камуфляж

Микроб заполняет брешь

,Реактор познавательный,галилео, реактор познавательный, интересности, интересное, #галилео,разное,The Brights,эволюция,бактериология,Lokiarchaeota,Lokiarchaeum

(Гидротермальная система Замок Локи вдоль Срединно-Атлантического хребта)
В донных осадках на глубине 3283 м в Северном Ледовитом океане обнаружены микроорганизмы из надцарства архей, более близкие к эукариотам, чем любые другие прокариоты. Судя по набору генов, новая группа микробов, получившая название локиархей, обладает многими важными признаками эукариот, включая актиновый цитоскелет и способность к фагоцитозу. Скорее всего, именно благодаря этой способности предкам эукариот удалось захватить бактериального симбионта, давшего начало митохондриям. Открытие подтвердило, что эукариоты не просто имели общего предка с современными археями (что соответствует «трехдоменному» древу жизни), а произошли от одной, вполне определенной, группы архей, что соответствует «двухдоменному» древу и формально (с точки зрения кладистической систематики) заставляет считать эукариот подгруппой архей.

Происхождение эукариот — одна из самых интригующих проблем эволюционной биологии. Для объяснения отдельных этапов становления эукариотической клетки и всего процесса в целом предложены сотни гипотез, как конкурирующих, так и дополняющих друг друга.

На сегодняшний день твердо установлено, что митохондрии и пластиды эукариотической клетки являются потомками симбиотических бактерий (альфапротеобактерий и цианобактерий соответственно). Митохондрии были уже у последнего общего предка всех современных эукариот: это их универсальная черта. Хотя некоторые современные эукариоты лишены митохондрий, это — результат вторичной утраты.

Природа «хозяйской» клетки, некогда захватившей бактериальных симбионтов, менее очевидна, чем происхождение митохондрий и пластид. Геном эукариот явно имеет химерное происхождение: часть генов досталась им от архей, другая — от бактерий (в том числе от симбионтов, но не только от них). Гены архейного происхождения выполняют в эукариотической клетке в основном «центральные» функции (такие как работа с генетической информацией и синтез белка), гены бактериального происхождения — в основном «периферические» (обмен веществ, взаимодействие с внешней средой). По-видимому, предок эукариот (та клетка, которая приобрела митохондриального симбионта) был близок к археям, а бактериальных генов он нахватался путем горизонтального переноса. Недавние исследования показали, что массированное заимствование бактериальных генов происходило на ранних этапах формирования чуть ли не всех крупных клад (групп) архей, так что предок эукариот в этом плане не был исключением (S. Nelson-Sathi et al., 2014. Origins of major archaeal clades correspond to gene acquisitions from bacteria — http://www.nature.com/nature/journal/v517/n7532/abs/nature13805.html).

Однако эукариотическая клетка устроена намного сложнее, чем прокариотическая, причем далеко не для всех эукариотических генов и молекулярных систем найдены очевидные прокариотические предшественники или аналоги. Откуда взялись эти уникальные особенности эукариотической клетки — вот главный вопрос, на который необходимо ответить. Другой, менее принципиальный, но тоже интересный вопрос, связан со структурой древа жизни.
K1> X® /,0“	x*&	v“&	cr
•<&	n<<o ^ <o'	(J--	•	<&■	q”-
/ //// / />°>V
<??	«,->o' <°	<J?	X”	o'W
+1 laa ( EF-1 ff/Tu )
Three-domains	Eocyte	tree
tree,Реактор познавательный,галилео, реактор познавательный, интересности, интересное, #галилео,разное,The Brights,эволюция,бактериология,Lokiarchaeota
 
Ставшая уже классической «трехдоменная» система делит все клеточные организмы на три домена (надцарства): бактерии, археи и эукариоты. Альтернативная двухдоменная версия предполагает, что эукариоты отпочковались от одной из групп архей уже после того, как те начали расходиться (дивергировать). В этом случае эукариот формально следует считать подмножеством архей.

По мере накопления геномных данных позиции двухдоменной модели укрепляются. Становится всё более очевидно, что эукариоты обособились внутри архейной «кроны», то есть являются более близкими родственниками одним археям, чем другим. На роль ближайшего родственника эукариот претендует так называемая клада TACK — надтип архей, включающий типы Thaumarchaeota, Aigarchaeota, Crenarchaeota и Korarchaeota. Впрочем, молекулярно-генетическое сходство эукариот с представителями этой клады недостаточно велико, чтобы однозначно решить вопрос об их родственных связях.

Археи — чрезвычайно разнообразная группа, однако значительная часть их разнообразия сегодня известна ученым лишь по последовательностям гена 16S рРНК, по которому традиционно проводят классификацию прокариот. Это некультивируемые микробы, отказывающиеся расти на лабораторных средах. Из проб, взятых в разных местах (например, из почвы, горячих источников или донных морских отложений) выделяют все имеющиеся там версии гена 16S рРНК и строят по ним эволюционные деревья. На деревьях часто обнаруживаются ветви, не соответствующие ни одной из известных групп прокариот. О такой ветви можно только сказать, что это новая, неизвестная группа, и примерно определить степень ее родства с известными микробами. «Примерно» — потому что одного-единственного гена 16S рРНК недостаточно для более строгих выводов.

В кладе TACK тоже есть такие условные группировки некультивируемых архей, одна из которых называется DSAG (Deep-Sea Archaeal Group — «глубоководная группа архей»). Археи из этой группы обнаружены во многих точках мирового океана на больших глубинах. Фактически, DSAG — одна из самых многочисленных и широко распространенных групп архей в глубоководных донных отложениях, однако ни вырастить чистую культуру этих микробов в лаборатории, ни выделить из проб другие их гены, кроме 16S рРНК, пока не удавалось. Точнее, выделить-то можно, но как понять, какие из бесчисленных фрагментов ДНК в данной пробе принадлежат именно интересующему нас микробу — обладателю необычного варианта 16S рРНК?

Исследователям из Уппсальского университета (Швеция) и Бергенского университета (Норвегия) удалось преодолеть технические препятствия, до недавних пор казавшиеся непреодолимыми, и собрать из кусочков почти полный геном одного микроба из загадочной группы DSAG, а также неполные геномы двух других ее представителей.

Авторы изучили ДНК из пробы грунта, поднятой с глубины 3283 м в Северном Ледовитом океане, недалеко от гидротермальной зоны Loki’s Castle («Замок Локи»), расположенной на склоне срединно-океанического хребта. Анализ последовательностей 16S рРНК показал, что доля архей из группы DSAG в пробе необычайно высока (около 10% всех прокариот и более 70% архей в пробе принадлежат к этой группе). Это и позволило, наряду со сложнейшими современными методами метагеномного анализа и компьютерной обработки геномных данных, отделить фрагменты генетического материала DSAG от всех прочих и собрать из них три генома.

Авторы использовали множество хитроумных приемов. Например, чтобы на первом этапе получить набор фрагментов ДНК, почти наверняка принадлежащих DSAG, они искали «филогенетически значимые» гены (то есть медленно эволюционирующие и при этом имеющиеся почти у всех микробов), строили для каждого гена эволюционное дерево, а затем выбирали те генетические варианты, чье положение на дереве соответствует положению DSAG на дереве 16S рРНК.

Поскольку природа DSAG после сборки геномов во многом прояснилась, авторы присвоили группе более внятное название. Они нарекли глубоководных микробов «локиархеями» (Lokiarchaeota) в честь гидротермального района Замок Локи, а также в связи с тем, что споры мифологов вокруг фигуры этого скандинавского бога сопоставимы по остроте со спорами биологов о происхождении эукариот. Тот представитель группы, чей геном собрали почти полностью, был назван Lokiarchaeum, двух других обозначили пока условно: Loki2 и Loki3.

О чем же рассказали геномы локиархей? Прежде всего, они позволили построить надежное эволюционное дерево, основанное не на единственном гене 16S рРНК, как до сих пор, а на аминокислотных последовательностях 36 консервативных белков, считающихся хорошими «филогенетическими маркерами».
Methanopyrus kandleri AV19
Euryarchaeota
DPANN
Thermococcales
1
Loki3 (low GC)
Loki2 (high GC)
Lokiarchaeum
Korarchaeota
Crenarchaeota MCG
Thaumarchaeota Aigarchaeota
Eukarya
TACK,Реактор познавательный,галилео, реактор познавательный, интересности, интересное, #галилео,разное,The


На этом дереве локиархеи образуют единую монофилетическую группу в пределах надтипа TACK. Когда авторы включили в анализируемый массив данные по эукариотам, те пристроились к локиархеям в качестве одной из веточек: ближе к Loki3, чем к Lokiarchaeum и Loki2. Таким образом, локиархеи оказались ближе к эукариотам, чем к другим археям (подобно тому, как шимпанзе ближе к людям, чем к другим обезьянам). С точки зрения кладистической систематики это означает, что эукариоты — подмножество архей (подобно тому, как люди — подмножество обезьян). Таким образом, подтвердилась двухдоменная, а не трехдоменная структура древа жизни.

Одной из особенностей геномов локиархей является повышенная доля генов бактериального происхождения. Это согласуется со сказанным выше о периодическом массовом заимствовании бактериальных генов археями, в том числе, возможно, и предками эукариот.

Если локиархеи — ближайшая родня эукариот, то у них могут найтись гены и признаки, характерные для эукариот, но отсутствующие у других прокариот. И действительно, в геноме Lokiarchaeum нашлось целых 175 белок-кодирующих генов (3,3% от общего числа генов в геноме), похожих на эукариотические, в том числе на так называемые ESPs (eukaryotic signature proteins) — белки, считающиеся уникальными для эукариот. Этот факт, наряду с вышеупомянутым эволюционным деревом, — второй весомый довод в пользу близкого родства локиархей и эукариот.

Авторы скрупулезно разбирают факты, позволяющие утверждать, что «эукариотические» гены Lokiarchaeum не являются результатом случайного загрязнения собранного генома нуклеотидными последовательностями эукариот. Во-первых, эти гены у Lokiarchaeum всегда соседствуют с типично прокариотическими генами, а во многих случаях они находились на прочтенных фрагментах ДНК вместе с генами, уникальными для архей. Во-вторых, эти гены присутствуют в пробе во множестве экземпляров. При этом настоящая эукариотическая ДНК там обнаружена лишь в следовых количествах, а характерные для эукариот гены 18S рРНК вовсе не найдены. В третьих, на эволюционных деревьях «эукариотические» гены локиархей во многих случаях образуют базальные ветви, то есть отделяются от общего ствола до начала дивергенции эукариот. Это значит, что они унаследованы от общего с эукариотами предка, а не заимствованы у эукариот позднее.

Среди «эукариотических» генов локиархей наибольший интерес представляют гены, связанные с подвижностью клетки и ее мембраны, с возможностью формирования разнообразных мембранных структур и активного захвата объектов из внешней среды. Ключевую роль в выполнении этих функций у эукариот играет белок актин — важнейший компонент цитоскелета. В геноме Lokiarchaeum имеются целых пять генов, кодирующих белки, похожие на эукариотические актины и актиноподобные белки (ARPs, actin-related proteins). Эти белки локиархей («локиактины») намного ближе к актинам эукариот, чем открытые ранее у других архей гомологи актина — так называемые кренактины. Эволюционные деревья показывают, что общий предок эукариот уже имел более одного актинового гена, то есть начало диверсификации актинов предшествовало появлению эукариот. Кроме того, у локиархей есть белки, похожие на известные эукариотические регуляторы формирования актиновых нитей. Таких белков нет у других прокариот. По мнению авторов, эти факты показывают, что у локиархей с большой вероятностью имеется актиновый цитоскелет.

У локиархей также обнаружено большое разнообразие особых регуляторных белков (малых ГТФаз из надсемейства Ras), играющих у эукариот важную роль в регуляции работы актинового цитоскелета в ходе таких процессов, как фагоцитоз и везикулярный транспорт. У некоторых других прокариот тоже найдены похожие белки, но в несопоставимо меньшем количестве.

Еще одна «эукариотическая» черта локиархей — присутствие особого комплекса генов (ESCRT), служащего для образования всевозможных изгибов клеточной мембраны и отпочковывания мембранных пузырьков. У эукариот комплекс ESCRT обслуживает, помимо прочего, систему убиквитин-опосредованной деградации белка; в геномах локиархей обнаружены компоненты и этой системы тоже.

Рибосомы локиархей, по-видимому, больше похожи на рибосомы эукариот, чем любые другие прокариотические рибосомы. В частности, только у локиархей есть «эукариотический» рибосомный белок L22e.

Таким образом, локиархеи оказались своеобразными переходными формами, заполняющими брешь между типичными про- и эукариотами. Важность этого открытия для решения проблемы происхождения эукариот трудно переоценить. Анализ генома локиархей и его сравнение с геномами других представителей клады TACK показали, что архейный предок эукариот имел сложное строение и обладал многими продвинутыми признаками, которые раньше считались уникальными для эукариот. Такие эукариотические «ноу-хау», как убиквитиновая система деградации отслуживших белков, актиновый цитоскелет, везикулярный транспорт, а возможно, и фагоцитоз, необходимый для захвата симбионтов, — всё это, вероятно, уже имелось у тех архей, которые дали начало эукариотам, подружившись с альфапротеобактерией — предком будущих митохондрий.

В свете новых данных становится понятнее отмеченное ранее мозаичное распределение отдельных эукариотических признаков у архей из клады TACK. Скорее всего, эти признаки имелись у их общего предка с локиархеями и эукариотами, но потом в разных ветвях они многократно и независимо терялись.
TACK
^<9
ifi < < <
•ooo##oo#o##o#«o#oooo
oooo«tooooto©t«otoooo oooooooo#ooooooo o ooo
OOO0OOOOOOOOOOOO o ooo
ooooooooooocoooo o ooo oooo«ooo#ooooooo o ooo 3000000000000000 o ooo,Реактор познавательный,галилео, реактор познавательный, интересности, интересное, #галилео,разное,The Brights

Растущие возможности метагеномики и компьютерного анализа нуклеотидных последовательностей позволяют надеяться, что среди некультивируемых микробов — этой «темной материи» мира прокариот — будет найдено еще немало интересных форм. В частности, среди локиархей (которые, как мы знаем, являются широко распространенной и массовой глубоководной группой) вполне могут обнаружиться виды, стоящие еще ближе к эукариотам, чем описанные в обсуждаемой статье.

Александр Марков

1. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Doi:10.1038/nature14447. — http://www.nature.com/nature/journal/v521/n7551/abs/nature14447.html
2. Evolution: Steps on the road to eukaryotes. Doi:10.1038/nature14522. — http://www.nature.com/nature/journal/v521/n7551/abs/nature14522.html

Источник — http://elementy.ru/news?newsid=432477
Здесь мы собираем самые интересные картинки, арты, комиксы, мемасики по теме (+83 постов - )