sfw
nsfw

Результаты поиска потегустарение

Дополнительные фильтры
Теги:
старениеновый тег
Автор поста
Рейтинг поста:
-∞050100200300400+
Найдено: 48
Сортировка:

Начались первые испытания на людях препарата, направленного на уничтожение старых клеток


Клеточное старение - естественный процесс. При достижении определенного порога (предел Хейфлика) клетка перестает делиться. Но не умирает. Она продолжает жить и в силу возраста производить биологически активные вещества, которые влияют на остальной организм не лучшим образом. Накопление таких клеток в тканях организма приводит к возрастным изменениям и заболеваниям и считается одной из причин старения вообще. 

Ранее испытания на мышах подтвердили, что избавление от состарившихся клеток омолаживает организм.

Теперь компания Unity Biotechnology будет в двойном слепом исследовании испытывать препарат UBX0101, направленный на устранение старых клеток из суставов для лечения остеопороза коленей. Это всего второй раз, когда терапия, направленная на омоложение, добралась до испытаний на людях. Но в ближайшие годы, неминуемо, таких исследований станет все больше. Многие компании находятся на разных этапах подготовки. Как говорится, почалося. 

Потом запилю отдельный подробный пост про все виды терапии, которые готовятся.

Как обратить старение вспять? Разгладить морщины в клетках тела

Новое открытие эффектов старения,которые сказываются на клетках человека,может позволить врачам вылечить диабет,жировую болезнь печени и другие метаболические заболевания. А возможно,даже повернуть вспять старение организма.
,Реактор познавательный,старение,клетки,морщины

Открытие, сделанное учеными Виргинского университета, предполагает, что жировая болезнь печени и другие нежелательные эффекты старения могут быть результатом морщин в ядре клетки, том отделе, где содержится наша ДНК. Эти морщины и складки не дают генам нормально функционировать.
Крема от морщин для ядер не бывает, но есть одна странная и неожиданная возможность разгладить их. Мы можем с помощью вирусов разгладить поверхность мембран и восстановить функциональность клеток, вернув им состояние, свойственное молодости.
Новое исследование показывает, что расположение нашей ДНК внутри ядра клетки критически важно для функционирования организма. Гены, которые отключаются, прижимаются к мембране ядра, но с возрастом эти мембраны становятся неравномерными, морщинистыми, и потому гены перестают толком отключатся, что влечет за собой серьезные проблемы.
Например, стеатоз печени, накопление жира внутри печени человека, начинается из-за морщинистых мембран ядра. Скопление жира внутри печени может привести к различным проблемам со здоровьем, например, к диабету, сердечно-сосудистым заболеваниям и даже к смерти.
Морщины на мембранах появляются из-за недостатка вещества под названием ламин, клеточного белка, существующего в разных формах. Подобрав соответствующую форму ламина и вернув его в клетку, мы можем разгладить мембранные морщины
Правда, есть проблема. Довести ламин до цели очень сложно, но этим могут заняться вирусы. Ученые уже модифицируют вирусы для медицинских целей, и отправить модифицированный вирус в печень будет довольно легко. Сработает ли метод, пока неизвестно, но если все получится, то клетка вернется в результате к молодому состоянию, что создаст условия для нормальной экспрессии генов. Более того, ученые полагают, что такие морщины на мембранах ответственны за другие следствия старения, и сглаживание морщин будет иметь универсальный эффект.


Зачем мы стареем, почему размножаемся, и как это связано с микроорганизмами?

,наука,песочница,эволюция,микробы,старение,смерть,биология

Глава девятая - Логика пандемии

Непосредственных исторических данных о досаждавших человечеству древних пандемиях у нас нет. Судить о них можно лишь по косвенным признакам, по оставленным ими отпечаткам и отголоскам. Но, согласно эволюционной теории и растущему массиву доказательств из области генетики и других наук, пандемии и вызывающие их патогены сыграли немалую роль в формировании основополагающих аспектов человеческой природы – от воспроизводства до смерти. Они обусловили разнообразие наших этносов, исходы наших войн, передающиеся из поколения в поколение представления о красоте, не говоря уже о наших организмах как таковых и их уязвимости для сегодняшних патогенов. На современных факторах, провоцирующих пандемии, их древнее могучее воздействие сказывается точно так же, как на течениях – воздействие приливов и отливов.

Болезнь – неотъемлемая составляющая взаимоотношений между микробами и носителями. Чтобы убедиться, достаточно совершить краткий экскурс в историю существования микробов и заглянуть внутрь нашего собственного тела. Сейчас царь природы – человек, однако в прошлом на планете царили микробы. К тому времени – около 700 млн лет назад, – как наши древнейшие предки, первые многоклеточные организмы, выбрались из моря, микробы колонизировали земной шар уже почти 3 млрд лет. Они заполонили все доступные среды обитания – море, почву, глубокие слои земной коры. Они выдерживали самые невероятные условия – от 10-градусного мороза до 110-градусного пекла, питаясь чем угодно – от солнечного света до метана. Благодаря такой стойкости и выносливости они смогли существовать в самых недоступных и экстремальных нишах, осваивая поры скальных пород, ледяную корку, вулканы и океанские глубины. Им неплохо жилось даже в самых холодных и соленых морях{566}.

Для микробов наш организм был всего-навсего очередной нишей для освоения, и, как только он сформировался, они устремились завоевывать новую среду. Микробы колонизировали нашу кожу и эпителий кишечника. Они внедрили свои гены в наши. Вскоре в человеческом организме обитало 100 трлн микробных клеток – в десять с лишним раз больше, чем человеческих. Треть нашего генома образована генами бактериального происхождения{567}.

По доброй ли воле наши предки давали прибежище микроорганизмам-колонизаторам? Возможно. Но маловероятно. Потому что, подобно обороняющемуся государству, объявившему всеобщую мобилизацию, мы выработали огромный арсенал средств для распознавания, захвата и уничтожения микробов. Мы отшелушиваем частицы кожи вместе с микробами, угнездившимися на ее поверхности. Регулярно моргая, мы смываем микробов с глазных яблок. Мы создали антибактериальную смесь из слизи и соляной кислоты в желудке, чтобы микробам неповадно было там селиться. Каждая клетка нашего организма изобретала хитрые способы защититься от микробного вторжения и самоуничтожиться в случае неудачи.


Специализированные клетки – белые кровяные тельца – курсируют по организму с единственной задачей: выявлять, атаковать и истреблять микробов-захватчиков. За то время, что вы читаете эти строки, они уже пронеслись потоком по всему вашему телу, выискивая признаки микробного вторжения.


Выработка этой иммунной защиты свидетельствует о непреходящей угрозе, которую всегда представляли собой микробы. Чтобы выжить, наш организм должен был чутко реагировать на заражение и давать отпор. Иммунная защита существует не для проформы – как какой-нибудь пенсионер-охранник, похрапывающий перед телевизором в дальней комнате захудалого магазина. Она всегда начеку и заводится с пол-оборота. Сегодня нам достаточно увидеть изображение человека, подвергнувшегося микробной атаке – чихающего или с гнойниками на коже, – и наши белые кровяные тельца лейкоциты моментально выбросят усиленный десант иммунных борцов, например цитокина интерлейкина-6, будто нам и в самом деле грозит микробный удар{568}.

Поддерживать эту боеготовность против микробов – дело нелегкое. При каждой активизации иммунной системы нам требуется увеличивать потребление кислорода. И когда энергию приходится тратить куда-то еще (например, когда мы вынашиваем и нянчим потомство), защита закономерно ослабевает. И в первобытные времена, и сейчас нам не хватает ресурсов, чтобы обслуживать энергоемкую иммунную систему. Защита организма от микробных посягательств «затратна», как говорят биологи. И все же мы эту цену платим, поскольку иначе в микробном окружении не выжить{569}.


Однако, хотя иммунная система и борется с покушениями патогенов на организм, обезопасить его полностью она не может. Об этом нет и речи: по сей день любое снижение боеготовности – или изменение способности микробов прорывать защиту – приводит к жестоким стычкам. Когда наша иммунная защита ослабевает с возрастом, из-за болезни или упадка сил, в клетки вторгаются микробы. И начинают бесчинствовать – каждый по-своему. Одни размножаются без меры, поглощая наши питательные вещества или разрушая в процессе наши ткани. Другие, в частности холера, выделяют токсины, способствующие ее размножению или распространению. Третьи просто вызывают реакцию других чувствительных систем организма. Способы могут быть разными, но итог один: они жиреют, а мы таем.


Мы называем этих захватчиков патогенами, но на самом деле это просто микроорганизмы, которые делают то же, что и везде: непрерывно питаются, растут и распространяются. Такова их природа. При оптимальных условиях микробы удваиваются в количестве каждые полчаса. И они не стареют. Пока вокруг достаточно пищи, они не умрут, если только не уничтожить их специально. Иными словами, они будут эксплуатировать любые доступные ресурсы по максимуму, и если это приведет к эпидемии или пандемии – ну что ж поделать.


Мы можем себе представить картину прошлого, полного пандемий, исследуя логику жизненного цикла микроорганизмов и характер нашей иммунной защиты. Но есть и другие источники информации. Эволюционные биологи и генетики считают подтверждением нарисованной картины определенные аномалии – необычные профили генной экспрессии в нашей ДНК и странные, ничем иным не объясняющиеся поведенческие проявления. Для специалиста (а специалистов в этих областях все больше) они не менее показательны, чем для следователя – дрожь в руках у человека, вроде бы благополучно оправившегося от психического потрясения. Объяснить их наличие можно только бурным, изобиловавшим пандемиями прошлым.


* * *

Большинство людей не видит в этих аномалиях ничего аномального – странного или труднообъяснимого. Это две фундаментальные составляющие нашей жизни: половое размножение и смерть. Мы принимаем их как данность. Но для эволюционного биолога это загадочные явления нашей эволюции, требующие объяснения.


Чтобы разобраться в этом несколько парадоксальном положении дел, потребуется небольшой экскурс в так называемую теорию эгоистичного гена. Основная ее идея заключается в том, что главной движущей силой эволюции выступают гены или, точнее, геном – весь набор генов конкретной особи. Геном состоит из длинных спиральных молекул ДНК (или РНК), которые содержатся в каждой из наших клеток. В их элементах (генах) закодированы инструкции для формирования всех биологических особенностей, от цвета глаз и формы носа до тембра голоса. Согласно теории эгоистичного гена, к «действиям» генов по поддержанию собственного существования сводится вся эволюция. Одни гены, диктуя, т. е. кодируя, свойства организма, которые будут способствовать их вместе с самим организмом дальнейшему распространению, устойчиво закрепляются. Другие кодирующие особенности, бесполезные или мешающие успеху распространения, вымирают.

С точки зрения теории эгоистичного гена половое размножение и смерть как раз и удивительны – ведь ни половую связь, ни смерть, учитывая возможные альтернативы, эффективным средством распространения генов не назовешь.


Возьмем половое размножение. Когда-то все живое на планете размножалось неполовым путем (клонированием или иными способами). Полового размножения не было. Но на каком-то витке эволюции оно появилось, хотя с точки зрения генов стратегия эта сильно уступала другим способам воспроизводства. Клонирующийся организм передает потомству все 100 % своих генов, тогда как при половом способе приходится не только искать партнера для воспроизводства, но и упускать половину генов, поскольку отпрыск наследует лишь 50 % от каждого родителя.


Чтобы выжить, первым организмам, размножающимся половым путем, необходимо было победить в конкуренции с клонирующимися, господствовавшими над ресурсами и экологическими нишами планеты. Но каким образом? В 1970-х годах эволюционный биолог Уильям Хэмилтон смоделировал на компьютере условия тех первобытных времен. Для модели задано было население, в котором половина особей размножается клонированием, а половина – спаривается. (Вообразите себе клан амазонок, которые размножаются без мужчин, и племя женщин, которое производит потомство только при участии партнера противоположного пола.) Никто из них не избавлен от вероятности случайной смерти, грозящей любому живущему в дикой природе, – погибнуть в когтях хищника или замерзнуть в буране. Затем компьютерная модель просчитывала репродуктивный успех обоих племен, вычисляя, сколько потомства произведет каждое.

Результаты двух разных стратегий размножения не заставили долго себя ждать. При каждом запуске модели воспроизводящиеся половым путем быстро вымирали. Случайная гибель в спаривающемся племени приводила к непропорциональному истощению фонда потенциальных партнеров (что испытал на себе любой представитель возраста «кому за сорок», пытающийся завести романтическое знакомство). Клонирующимся, которые сохраняли стабильный уровень воспроизводства независимо от случайных потерь, это не грозило. И не важно, что потомство в спаривающемся племени получалось более генетически разнообразным, а значит, более устойчивым к изменениям окружающей среды в долгосрочной перспективе. Перед непосредственной опасностью в виде бремени случайных потерь долгосрочные преимущества меркли.


Получается, что половое размножение – провальный эксперимент? А вот и нет. В конечном итоге репродуктивная стратегия наших самых далеких предков распространилась на все животное царство, включая и человека, для которого до сих пор поиск партнера – одна из основных жизненных задач.


Разрешил этот парадокс сам Хэмилтон, предложив сенсационную разгадку: половая связь появилась благодаря патогенам.

Половое размножение требует значительной генетической жертвы, отмечает Хэмилтон, но она окупается тем, что потомство при таком размножении генетически отличается от родителей. В борьбе с суровой погодой или хищниками это невеликое преимущество, а вот в борьбе с патогенами – огромное. Поскольку патогены, в отличие от погоды или хищников, оттачивают технику наступления.


Предположим, некий патоген прицепился к вам еще в младенчестве. По мере того как вы растете, у него сменяются сотни тысяч поколений. К тому моменту, как вы достигнете зрелости (если он вас за это время не убьет) и будете готовы дать потомство, его техника нападения будет совершеннее вашей техники защиты. Ваши генетические характеристики остались на прежнем уровне, а патоген успел эволюционировать.


Особи, размножающиеся клонированием, создают точную копию организма, который перед патогеном уже спасовал, а значит, оставляют потомству самые ничтожные шансы умерить аппетиты патогена. Гораздо выгоднее в таком случае, рассуждал Хэмилтон, производить генетически отличное от вас потомство, даже если половиной собственных генов для этого придется пожертвовать.

Насколько отточенными становятся со временем атаки патогенов, ученые продемонстрировали, в порядке эксперимента подсаживая патогены пожилой особи к более юной. Одно из таких исследований, на которое ссылается эволюционный зоолог Мэтт Ридли, проводилось над деревьями-долгожителями – Дугласовыми пихтами, которые регулярно страдают от щитовки. (Хоть щитовка не микробы, но, как и микробные патогены, приводит к болезни дерева.) В дикой природе старые деревья болеют больше молодых. И вовсе не потому, что они слабее, хотя именно эта догадка первой приходит на ум. Старые деревья легче поддаются заражению, потому что у развившихся на них патогенов было больше времени приспособиться. Молодое дерево, на которое ученые пересадили щитовку со старого, болело с той же интенсивностью. Учитывая все это, неудивительно, что половое размножение увеличивает шансы на выживание по сравнению с клонированием{570}.

За время своего существования гипотеза Хэмилтона о патогенах и эволюции половых связей успела получить внушительное эмпирическое подкрепление. Биологи установили, что виды, которым свойственно как половое, так и бесполое размножение, переключаются с одного на другое в зависимости от присутствия патогенов. При выращивании в лабораторных условиях, где привычных патогенов нет, или в окружении патогенов, искусственно лишенных возможности эволюционировать, круглый червь Caenorhabditis elegans в основном размножается бесполым путем. Но, когда его осаждают патогены, он переходит на половое размножение. В других экспериментах ученые целенаправленным воздействием «отключали» червю половое размножение, и выращенные затем с патогенами черви вымирали в пределах двадцати поколений. И наоборот, когда круглым червям оставляли возможность размножаться половым путем, они выживали в окружении патогенов бесконечно долго. Судя по всему, без определенных преимуществ, которые дает половое размножение, противостоять патогенам не удастся{571}.


В дополнение к эволюции половых связей патогены могли спровоцировать и другую адаптацию – смерть. Видеть в ней необязательное свойство, которое можно выработать эволюционным путем, нам непривычно. Неотвратимость увядания и смерти – один из ключевых элементов нашего мировоззрения. Мы рассматриваем тело как механизм, который со временем неизбежно изнашивается, его части выходят из строя, повреждения накапливаются, и наконец после преодоления некоего критического порога механизм перестает работать вовсе. Поэтому мы говорим, что «смерть не обмануть». У нас даже слово «возраст» – которое в буквальном смысле означает лишь течение времени – ассоциируется с увяданием и износом. (На самом деле мы имеем в виду биологическое старение – постепенное ухудшение функционирования организма, в конечном итоге приводящее к смерти.)


Однако неотъемлемым аспектом жизни одряхление и смерть назвать нельзя. Вокруг достаточно примеров бессмертия: микроорганизмы живут вечно, деревья не дряхлеют, а наоборот, с годами становятся только крепче и плодовитее. Для микробов и многих растений бессмертие – это правило, а не исключение. Среди животных тоже попадаются вечно юные: например, омары и двухстворчатые моллюски, которые гибнут лишь насильственной, а не естественной смертью.

У человеческого организма имеется одно бесспорное отличие от машины – возможность самовосстановления. После физической нагрузки мы восполняем урон, нанесенный мышцам. При переломе или порезе мы выращиваем новую костную ткань и рубцуем рану. (Есть даже сообщения о людях, которым нарастили оторванные пальцы.){572} У наших клеток имеется немало способов восстанавливаться после причиненного ущерба. Способности к самозаживлению имеются и у других животных: черви регенерируют из отрезанной части тела, морские звезды отращивают заново потерянные лучи, а ящерицы – хвост. И от этой регенерации организм не становится слабее, наоборот.


Ученые установили, что одряхление – вовсе не заведомая неизбежность, оно контролируется определенными генами – так называемыми генами смерти, или «самоубийственными». Их функция заключается в том, чтобы постепенно отключать процессы самовосстановления, поддерживающие организм в рабочем состоянии. Как дворецкий, который гасит свечи после бала. В урочный час, невзирая ни на что{573}.


Открытие этих генов относится к 1970-м, когда ученые обнаружили, что удаление определенных желез у самки осьминога может отсрочить неизбежную в противном случае смерть. В обычных условиях самка осьминога перестает питаться и умирает ровно через десять дней после высиживания яиц. Однако хирургическое удаление желез, отвечающих за созревание и размножение, кардинально изменило поведение самки. Отложив яйца, она снова начала есть и прожила еще полгода{574}. Аналогичные гены, не имеющие иной задачи, кроме как запускать процесс угасания и смерти, ученые выявили у червей и мух. Если эти гены «отключить» в ходе эксперимента, смерть откладывается – подопытные червяки и мухи продолжают жить{575}.


Пока маловероятно, что такие же – однозадачные – гены обнаружатся у людей. Скорее всего, гены самоуничтожения у человека выполняют целый ряд функций, как разрушительных, так и полезных. Гены, отвечающие за воспаление, защищают нас от ран и инфекций в юности, но затем идут вразнос и начинают поражать здоровые клетки. Условия, провоцирующие такую резкую смену курса, еще не установлены, однако, по очевидным причинам, по этой теме ведется масса вызывающих пристальный интерес исследований в области борьбы со старением{576}.


Открытие самоубийственных генов рождает те же вопросы, что и половое размножение. Как такие гены могли развиться? Вызываемая ими запрограммированная смерть – заведомый проигрыш по сравнению с альтернативами. При непосредственной эволюционной конкуренции обремененные подобными генами особи – сходящие с дистанции на полпути к финишу, тогда как соперники летят вперед во весь опор, – несомненно, терпят фиаско. А значит, такой серьезный недостаток должен как-то окупаться.


Окупается он, согласно так называемой адаптационной теории старения, защитой против пандемий, уничтожающих целые виды. У бессмертия, несомненно, есть свои выгоды, но есть и существенные издержки. Одна из них заключается в том, что бессмертный вид очень быстро разрастается до исчерпания необходимых ему ресурсов окружающей среды. И тогда он становится уязвимым для таких бедствий, как голод и пандемии, которые могут уничтожить его одним махом, убив всех представителей разом.

Известно, что в прошлом подобные катастрофы случались нередко. В конце концов, 99,9 % всех когда-либо существовавших на Земле видов сейчас отсутствуют. Нынешние оставшиеся – это те немногие, кому удалось выжить на нашей непредсказуемой планете. Как же им удалось?


Бессмертные виды вроде микробов, скорее всего, устояли против катастрофического голода – и пандемий в том числе – за счет клонирования. Это значит, что даже пандемия, уничтожающая 99,9 % популяции, не приведет к вымиранию, поскольку мизерного количества оставшихся хватит, чтобы восстановить численность. А вот у размножающегося половым путем бессмертного вида шансы невелики. По подсчетам одной команды биологов, занимающихся сохранением биоразнообразия, минимальная численность жизнеспособной популяции у большинства животных видов с половым способом размножения составляет около 5000 особей{577}. Другие называют цифры от 500 до 50 000 в зависимости от вида. Любая пандемия (или голод), при которой порог минимальной численности будет перейден, уничтожит размножающийся половым путем вид навсегда{578}.

Согласно адаптационной теории старения, именно это обстоятельство и послужило предпосылкой для развития самоубийственных генов. Сценарий рисуется примерно такой: представьте две конкурирующие группы организмов, размножающихся половым путем. В одной группе все бессмертны. В другой появились самоубийственные гены и какие-то особи постепенно стареют и умирают. Первая группа напоминает густой лес, вторая – регулярно прореживаемый. При возникновении пандемии у первой группы шансов на выживание столько же, сколько у густого леса во время лесного пожара. Вторая, позволившая распространиться самоубийственным генам, выживет с большей долей вероятности.


Разумеется, полностью от угрозы голода и пандемий самоубийственные гены нас не защищают. Но поскольку старость и смерть мало-помалу, как выразился исследователь в области борьбы со старением Джошуа Миттельдорф, прореживают наши ряды, снижается риск вымирания всего вида целиком. Старение и смерть, утверждает Миттельдорф, – это отступные, которые мы платим пандемиям{579}.


И теория Хэмилтона об эволюции полового размножения, и адаптационная теория старения представляют собой разновидности так называемой гипотезы Красной Королевы[20], совершившей переворот в современной биологии. Название – отсылка к эпизоду из «Алисы в Зазеркалье» Льюиса Кэрролла. После бешеного бега вместе с Красной Королевой Алиса в изнеможении падает на землю и обнаруживает, что они с Королевой все там же, где были. «У нас, когда долго бежишь со всех ног, непременно попадешь в другое место», – недоумевает Алиса. «Ну а здесь, знаешь ли, приходится бежать со всех ног, чтобы только остаться на том же месте! Если же хочешь попасть в другое место, тогда нужно бежать по меньшей мере вдвое быстрее!»[21] – объясняет ей Королева.


Какое отношение это имеет к прошлому и будущему наших эпидемий? Как гласит классическая теория естественного отбора, которую сформулировал в 1859 году Чарльз Дарвин и которую учат на уроках биологии во всем мире, патогены и их жертвы со временем приспосабливаются друг к другу, эволюционируя в направлении минимизации трений. Гипотеза Красной Королевы утверждает иное.


В ответ на каждое эволюционное приспособление у одного вида появляется контрприспособление у противника. Иными словами, патогены и их жертвы не эволюционируют в направлении взаимной гармонии, а ведут бесконечную гонку вооружений, напоминая супругов в неудачном браке. Они «долго бегут со всех ног», но «никуда не движутся».


Из этого следует такой же вывод, как из гипотез, касающихся природы микробов и иммунной системы и эволюции полового размножения и смерти. А именно: отношения между патогенами и их жертвами не стремятся к урегулированию. Наоборот, это постоянная битва, в которой каждая сторона изобретает все более хитроумные способы пробить защиту противника.


А значит, эпидемии не обязательно вызываются неудачно сложившимися историческими условиями. Независимо от наличия каналов, самолетов, трущоб и агропромышленных комплексов патогены и их носители все равно были и остаются узниками замкнутого круга эпидемий. Эпидемии – это не исторические аномалии, а естественная особенность жизни в окружении микробов.


Глава 9 - Логика Пандемии
Книга - Пандемия: Всемирная история смертельных вирусов
Автор - Соня Шах

566
Markus G. Weinbauer and Fereidoun Rassoulzadegan, 'Extinction of Microbes: Evidence and Potential Consequences,' Endangered Species Research 3, no. 2 (2007): 205–15; Gerard Tortora, Berdelle Funke, and Christine Case, Microbiology: An Introduction, 10th ed. (San Francisco: Pearson Education, 2010).

567
Kat McGowan, 'How Life Made the Leap from Single Cells to Multicellular Animals,' Wired, Aug. 1, 2014

568
В анализах крови испытуемых, которым предъявлялись изображения людей, чихающих или покрытых оспинами, обнаруживалось на 23,6 % больше интерлейкина-6, чем у тех, кто разглядывал изображения предметов мебели или нацеленного оружия. C. L. Fincher and R. Thornhill, 'Parasite-Stress Promotes In-Group Assortative Sociality: The Cases of Strong Family Ties and Heightened Religiosity,' Behavioral and Brain Sciences 35, no. 2 (2012): 61–79.


569
Sabra L. Klein and Randy J. Nelson, 'Influence of Social Factors on Immune Function and Reproduction,' Reviews of Reproduction 4, no. 3 (1999): 168–78.

570
Matt Ridley, The Red Queen: Sex and the Evolution of Human Nature (New York: Macmillan, 1994), 80.

571
Michael A. Brockhurst, 'Sex, Death, and the Red Queen,' Science, July 8, 2011.

572
Makoto Takeo et al., 'Wnt Activation in Nail Epithelium Couples Nail Growth to Digit Regeneration,' Nature 499, no. 7457 (2013): 228–32.


573
Joshua Mitteldorf, 'Evolutionary Origins of Aging,' in Gregory M. Fahy et al., eds., The Future of Aging: Pathways to Human Life Extension (Dordrecht: Springer, 2010).


574
Jerome Wodinsky, 'Hormonal Inhibition of Feeding and Death in Octopus: Control by Optic Gland Secretion,' Science 198, no. 4320 (1977): 948–51.


575
Valter D. Longo, Joshua Mitteldorf, and Vladimir P. Skulachev, 'Programmed and Altruistic Ageing,' Nature Reviews Genetics 6, no. 11 (2005): 866–72.

576
Интервью с Джошуа Миттельдорфом, 4 февраля 2015 года.

577
Catherine Clabby, 'A Magic Number? An Australian Team Says It Has Figured Out the Minimum Viable Population for Mammals, Reptiles, Birds, Plants and the Rest,' American Scientist 98 (2010): 24–25.


578
Curtis H. Flather et al., 'Minimum Viable Populations: Is There a 'Magic Number' for Conservation Practitioners?' Trends in Ecology & Evolution 26, no. 6 (2011): 307–16.


579
Согласно адаптационной теории старения, адаптивность самоубийственных генов проявляется на уровне популяции, а не особи. Эволюционные механизмы действия так называемого группового отбора в данном случае точно не установлены. Joshua Mitteldorf and John Pepper, 'Senescence as an Adaptation to Limit the Spread of Disease,' Journal of Theoretical Biology 260, no. 2 (2009): 186–95.

Коктейль из препаратов замедляет старение.

Вообще-то статья еще летняя, но мне показалась интересной, да и не  было ее тут вроде.


Впервые в истории с помощью комбинации препаратов был достигнут выдающийся результат - почти вдвое большая продолжительность жизни в экспериментах с червями. И, что не менее важно, более половины червей, получавших смесь, не демонстрировали признаков старения, в то время, как черви из контрольной группы уже попередохли. В дальнейшем, ученые показали, что та же самая комбинация препаратов, которая продляла жизнь червям, так же хорошо работает и на плодовых мушках. 
"Какое мне дело до червей и мух? Я человек", - может сказать анон. Но дело в том, что эволюционно (и во многих других смыслах) мы ближе к мухам, чем мухи к червям. И если на них это сработало одинаково, то как знать, может и для человеков сгодится?

В новой работе, опубликованной тута https://www.biorxiv.org/content/biorxiv/early/2017/06/21/153205.full.pdf Ян Грубер с коллегами тестировали различные смеси продляющих жизнь препаратов на C. elegans - круглых червях, популярных подопытных животных. 
В то время, как были проведены сотни исследований единичных препаратов, продляющих жизнь, исследований, которые бы исследовали смеси таких препаратов, было очень мало. Исследователи выбрали для тестов Рифампицин, Рапамицин, Метформин, Аллантоин и Psora-4.
Оказалось, что коктейль из полных доз препаратов скорее действует наоборот - снижает продолжительность жизни, но вот субоптимальные дозы каждого препарата, если давать их в смеси, дают лучший результат, чем оптимальные дозы отдельных препаратов.

Найденные комбинации оказались такими. Первый график - для средней продолжительности жизни, второй - для максимальной. Легко заметить, что максимальная продолжительность жизни без веществ меньше, чем средняя при лучших сочетаниях веществ.

CD
Mean lifespan,Реактор познавательный,биология,старение,продление жизни,вещества



Соучредитель исследовательского фонда SENS: первый человек, который доживет до 1000 лет, уже родился

Доктор Обри де Грей, соучредитель исследовательского фонда SENS, поставил своей целью поиск средства, которое избавило бы человечество от биологического старения. Он искренне верит, что существование мира, в котором возрастные заболевания попросту не существуют — это реальность, которая ждет нас в будущем.

На прошедшей конференции Virtual Futures в Лондоне Грей заявил, что первый человек, который доживет до 1000 лет, не просто родится в каком-то гипотетическом будущем, но уже появился на свет. Исследователь также считает, что наука найдет способ качественно усовершенствовать терапию, направленную на устранение возрастных изменений организма, в течение ближайших 20 лет.

На первый взгляд подобные заявления звучат как научная фантастика, однако в этом году ученые совершили значительный прорыв в области исследований методов борьбы со старением. В августе они обнаружили особое молекулярное соединение, которое помогает организму бороться со старением. А в октябре новая терапия с использованием стволовых клеток позволила существенно омолодить организм пациентов.

«Старение — это бич, который ежедневно убивает 110 000 человек во всем мире. Оно причиняет нам неисчислимые страдания, и, вопреки расхожему мнению, мы можем с ним бороться, поскольку данная проблема поддается научному и технологическому вмешательству», – поясняет Грей.
По данным ООН, к 2050 году численность людей, возраст которых превысит 60 лет, удвоится и будет составлять порядка 2,1 млрд человек. Грей предлагает создать сеть международных клиник, которые будут бороться со старением путем изучения семи «главных проблем»:

атрофия тканей;раковые клетки;митохондриальные мутации;усиление внеклеточного матрикса;внеклеточные скопления;внутриклеточные скопления;механизмы клеточной смерти.
Разумеется, что эта амбиционная стратегия требует огромного количества средств. Грей считает, что для победы над старостью лидеры всех стран мира должны единогласно поддержать предложенную им инициативу и бороться с биологическим старением сообща — лишь тогда у нас и в самом деле появится шанс если не на бессмертие, то хотя бы на старость, лишенную болезней и хлопот.

Кроме этого, ученый полагает, что на начальном этапе медицинские достижения в сфере борьбы со старением будут по карману лишь богатым, однако уже в скором времени общественность сделает эти методики общедоступными.
Что касается возможного перенаселения планеты, то Грей убежден, что в действительности проблема кроется лишь в том, что существующие технологии и модели потребления разрушительно влияют на природу.

«В абсолютном смысле проблемы перенаселения не существует», – утверждает исследователь.

Поздравляю Реакторчанин! 1000 лет одиночества. 
,Всё самое интересное,интересное, познавательное,,фэндомы,наука,человечество,старение,будущее

Очистка организма от старых клеток может обратить вспять старение

Создано вещество, которое при введении мышам поворачивало вспять возрастные изменения у генно-модифицированных (они стареют вдвое быстрее) мышей путем "убийства" состарившихся клеток. Через десять дней терапии у мышей заметно отрос мех, через две недели вдвое увеличилась выносливость по сравнению с контрольной группой, через месяц восстановилась функция почек. Возможно, говорит автор исследования, когда-нибудь вы будете приходить каждые пять лет после своих 65 за очередным уколом "омоложения". 
 На фото сверху омоложенная мышь, снизу - контрольная.
,наука,Реактор познавательный,старение,долголетие,бессмертие,продление жизни,молодость

Соус

Хронология жизни королевы Елизаветы по банкнотам фунта стерлингов


,дикаприо,время,старение

Таблетка от старения

Американские ученые разработали препарат, который путем "удаления" старых клеток из организма позволит продлить жизнь примерно на 20 лет. Испытано на мышках.
Избавление мышей от изношенных старых клеток позволяет им прожить дольше и избежать заболеваний, связанных со старением. Люди, возможно, тоже смогут овладеть подобными преимуществами в ближайшем будущем.

При изнашивании клетки не всегда умирают. Вместо этого они начинают выделять соединения, способные навредить окружающей их ткани. Этот процесс известен как клеточное старение. Наша иммунная система сама избавляется от износившихся клеток, но с течением времени справляется с этим все хуже и хуже. 

Препарат, разрабатываемый группой ученых под руководством Даррена Бэйкера (Darren Baker), показал, что за одно применение удается избавиться от 70% этих клеток. В экспериментах использовали препарат для удаления изношенных клеток 12–месячной мыши (аналог 40 человеческим годам) 2 раза в неделю до конца их жизни. Данный возраст выбран не случайно — приблизительно в этот период скопления изношенных клеток начинают приносить проблемы.

Мыши, подвергнутые препарату, жили в среднем на 25% — 35% дольше, чем их коллеги из контрольной группы.

«Это аналогично продлению человеческой жизни с 80 до 100 лет (25%)», — говорит Бэйкер.

К тому же, подопытным удалось избежать болезней, связанных со старением. 
После 6 месяцев терапии
— их сердца были здоровее
— восстановление после стресса происходило быстрее
— а почки имели меньше рубцов (которые обычно появляются со старением)

Кроме этого, у них не развивалась катаракта и рак до последних «лет» жизни, чего нельзя сказать об их товарищах из контрольной группы.

Возможно в недалеком будущем Бэйкер и его команда, работающие с компанией Unity Biotechnology (конкретно направленной на борьбу со старением), смогут повторить подобный успех на людях. Во всяком случае, есть основания полагать, что так оно и будет, поскольку исследование движется в сторону клинических испытаний, что не может не радовать.
 (с)
Здесь мы собираем самые интересные картинки, арты, комиксы, мемасики по теме (+48 постов - )